RESEARCH OVERVIEW ---BLACK HOLES

Mini-workshop of NCTS-TCA SSP 2021 Hsiang-Yi Karen Yang, NTHU, 7/5/2021

THE ROYAL SWEDISH ACADEMY OF SCIENCES

April 10, 2019

Good enough for Bridget Jones ..

11 April 2019

The return of chardonnay 😔

tias, chaos

Britain 10 years after Brexit 😔 By Jonathan Meades

THE FIRST EVER May defies critics with v on and see Brexit deal t BLACK HOLE

"All the News That's Fit to Price

ligrants Pour

Into a System

That's 'on Fire'

S. Border Could Be

t a Breaking Point

0

The New York Times

Peering Into Light's Graveyard: The First Image of a Black Ho

Linked Antennas Turn Earth Into Telescope

Israel

On

SICSWOR

The Black Hole (1979) Event Horizon (1997)

Interstellar (2014)

EVERYBODY LOVES BLACK HOLES!!!

OUTLINE

- Black hole 101
 - What is a black hole?
 - Do black holes exist?
 - What are active galactic nuclei (AGN)?
- Big questions in black hole astrophysics
 - How do supermassive black holes form?
 - How do AGNs affect the formation and evolution of galaxies?
 - What can we learn from gravitational waves (GWs) and the first black hole image?

WHAT IS A BLACK HOLE?

Dictionary

Search for a word

black hole

noun

ASTRONOMY

a region of space having a gravitational field so intense that no matter or radiation can escape.

Q

EINSTEIN'S GENERAL THEORY OF RELATIVITY(1915) : "MATTER TELLS SPACETIME HOW TO CURVE; SPACETIME TELLS MATTER HOW TO MOVE"

EINSTEIN'S GENERAL THEORY OF RELATIVITY(1915) : "MATTER TELLS SPACETIME HOW TO CURVE; SPACETIME TELLS MATTER HOW TO MOVE"

SPAGHETTIFICATION

• We would never make it to the center intact because the tidal force $(F_{tidal} \sim M/r^3)(r + \Delta r)^2$ would tear us apart

WHAT WOULD WE SEE IF LUFFY FALLS INTO THE BLACK HOLE.....?

WHAT WOULD WE SEE IF LUFFY FALLS INTO THE BLACK HOLE.....?

- Gravitational time dilation time measured by a distant observer would increase as the emitting object moves closer to the event horizon
- Gravitational redshift light emitted near the event horizon would appear redder and dimmer as viewed by a distant observer

NO HAIR THEOREM

- It says that "Stationary BHs after formation can be uniquely described given mass (M), angular momentum (J), and charge (Q)."
- Once (M, J, Q) are given, the spacetime is determined
- It means that BHs are in fact very simple objects!
- In the universe, EM force >> gravity, so it is easy for the black hole to attract an opposite charge -> Q = 0
- Important properties of a black hole: M and J

Maximum set of parameters:

{M, J, Q}

SPINNING BLACK HOLES

SPINNING BLACK HOLES

PENROSE PROCESS (1971)

It's possible to extract the rotational energy of a black hole this way!!

DO BLACK HOLES EXIST?

EVOLUTION OF STARS

WAIT...DO BLACK HOLES SHINE??

BLACK HOLES SHINE BY ACCRETING MATTER

Blue giant

ACCRETING BLACK HOLES ARE THE MOST EFFICIENT POWER FACTORIES!

- BH accretion disks can efficiently convert gravitational energy into radiation
- Radiative efficiency depends on BH spin parameter "a"
 - a = 0: Schwarzschild BHs
 - a /= 0: spinning BHs
- Radiative efficiency ɛ ~ 10% for most BHs
- This is much greater than $\epsilon \sim 0.7\%$ for nuclear fusion!

O ALL MYSTERIES SOLVED?

MILKY WAY GALAXY

Infrared image of the Galactic center

EVERY GALAXY HOSTS A SMBH AT THE CENTER!!

ACTIVE GALACTIC NUCLEI (AGN) = ACTIVELY ACCRETING SUPERMASSIVE BLACK HOLES

Radio/Gamma-ray

Conception of Active Galactic Nuclei

Optical/UV

Accretion disk

Jets

Supermassive black hole

Galactic disk

BLACK HOLES COME IN TWO FLAVORS

Stellar-mass BHs

- Masses: \sim 3-100 M_{sun}
- Originated from collapses of massive stars
- Distributed within galaxies
- Shine in X-ray when accreting from a companion star – X-ray binary

SMBHs

- Masses: ~10⁶-10¹⁰ M_{sun}
- Origin???
- Located at the center of galaxies
- Shine in optical/UV when accreting materials near the galactic centers -- AGN

HOW DO SUPERMASSIVE BLACK HOLES FORM?

SUPERMASSIVE BLACK HOLES GROW BY MERGERS AND ACCRETION

Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration

THE POWERFUL QUASARS IN THE EARLY UNIVERSE

- Quasars with billions of M_{sun} at z > 7 were discovered
- Current record holder: J0313-1806 found in 2021
 - Redshift z = 7.642 (690 Myr after Big Bang)
 - $M \sim 1.6 \times 10^9 M_{sun}$
- These objects are relatively rare; most quasars are found at z~2-3
- But their existence is surprising!!

THE GROWTH OF SMBHS

- Accretion of black holes are limited by the Eddington accretion rate
 - The *Eddington limit* refers to the balance between *gravity* and *radiation pressure force*
 - This is the maximum rate black holes can accrete
- The Eddington accretion rate is proportional to black hole mass, i.e.,

 $\dot{M}_{BH} = \frac{dM_{BH}}{dt} = AM_{BH}$

 Therefore, for BHs accreting at the Eddington rate, their masses grow *exponentially*

CAN EARLY QUASARS GROW FROM STELLAR-MASS BLACK HOLES?

- No there is not enough time!
- To explain the existence of massive SMBHs in the early universe, they must form from black hole "seeds" of ~10² - 10⁵ M_{sun}
- Three proposed BH seed formation mechanisms:
 - **Pop III stars**: $M_{BH} \sim 10^2 \sim 10^3 M_{sun}$ (light seeds)
 - Collapse of star clusters: $M_{BH} \sim 10^2 \sim 10^4 M_{sun}$ (intermediate seeds)
 - Direct collapse of gas clouds: $M_{BH} \sim 10^4 \sim 10^6$ M_{sun} (heavy seeds)

HOW DO AGNS AFFECT GALAXY EVOLUTION?

ORIGIN OF THE M-SIGMA RELATION?

- Most discussed hypothesis: AGN feedback
- BHs and galaxies *co-evolve*: both grow from accretion of gas
- Eventually the BH is so big and powerful that it blasts the gas from the galaxy and stops them from growing

THE "QUASAR-MODE" FEEDBACK

Radiative expels cold gas reservoir

- Quasar/radiative mode feedback
- More important at *higher redshifts*
- Operates mainly by expelling gas
- A plausible mechanism for the M-sigma relation
- Could quench star formation and regulate SMBH growth

THE "JET-MODE" FEEDBACK

Blue: X-ray gas Red: radio jets

- In massive galaxy clusters, the cluster gas is hot (T~10⁷K) and emits in X-ray
- This allows us to clearly see interactions between the jets and the gas
- The jets can provide lots of energy to heat the gas, otherwise the galaxy at cluster centers would produce too many stars and be too massive

THE JET-MODE FEEDBACK

Jet/kinetic mode feedback

- More important at *lower redshifts*
- Operates mainly by *heating gas* via jets
- Can reduce star formation at cluster centers and limit the growth of massive galaxies

SUCCESSES OF COSMOLOGICAL SIMULATIONS

- Cosmological simulations of galaxy formation
- Ingredients:
 - Baryons, dark matter, dark energy
 - Gravity
 - Gas dynamics
 - Star formation and supernova feedback
 - SMBH seeds and growth
 - Quasar- and jet-mode AGN feedback

M-SIGMA RELATION REPRODUCED

 Critical ingredient -- "quasar-mode" feedback

DISTRIBUTION OF GALAXIES REPRODUCED

Critical ingredient: "*jet-mode*" feedback

Devils lie in the details!

Gaspari (2020)

WHAT CAN WE LEARN FROM GRAVITATIONAL WAVES?

GENERAL RELATIVITY PREDICTS CURVED SPACETIME AROUND MASSES

A static black hole

Two orbiting black holes

LIGO (雷射干涉重力波天文台)

GRAVITATIONAL WAVE NETWORK

FIRST DETECTION OF GW IN HISTORY!!!

- On Sep. 14th, 2015, human detected GWs for the first time
- GWs resulted from merger of two stellar-mass black holes

FIRST DETECTION OF GW FROM A NS-NS MERGER

Conception of a NS-NS merger

- On Aug. 17, 2017, LIGO detected the first NS-NS merger event
- 70 observatories around the globe were watching the show
- Also detected in gamma-ray, optical, and infrared wavelengths
- This opened up the brand new field of "*multi-messenger astrophysics*"

FUTURE PROSPECTS

- **LISA** (Laser Interferometer Space Antenna)
 - Three test masses forming a triangle with 5 million km arms in space!
 - Frequency range ~0.001-0.1 Hz
 - Can detect mergers of SMBHs with $10^4 10^7 M_{sun}$
- Will probe the poorly understood distribution of intermediate black holes (IMBHs) with masses of $10^2 10^6 M_{sun}!$
 - Crucial for understanding SMBH formation

Design of LISA gravitational wave detector

THE FIRST INAGE OF BLACK HOLE

FIRST IMAGE OF BLACK HOLES – M87

- Taken by the *Event Horizon Telescope* (*EHT*), which is a network of 8 radio telescopes across 4 continents in the world
- Angular resolution: $\theta \propto \lambda/D$
- Extraordinary resolution ~ 25 microarcsec!

WHAT ARE WE SEEING IN THIS IMAGE?

- The first **DIRECT** evidence for black holes!!
- Black holes are black, consistent with GR predictions
- Dark region is called "BH shadow"
- The bright ring comes from emission of materials near the BH (e.g., accretion flow/jets)

THE M87 SMBH

- M_{BH}~6.5x10⁹ M_{sun} within M87 galaxy in Virgo cluster
- Relativistic jets and lobes extending to 10⁵ light years
- Crucial to monitor changes to understand jet formation mechanisms

 \bigcirc

COMING SOON – IMAGE OF THE GCBH

- The Sgr A* is ~1500x smaller than M87, but also closer, so shadow sizes are comparable
- Given the current resolution of EHT, these are the ONLY two BHs in the universe that we could resolve!!
- Things around Sgr A* vary on shorter timescales (~hours) so more difficult to analyze

SUMMARY

- Black holes are predicted by Einstein's theory of general relativity, and are confirmed to exist in the real universe
- There are two types of black holes
 - Stellar-mass black holes (smbhs): \sim 3-100 M_{sun}
 - Supermassive black holes (SMBHs): $\sim 10^6 10^{10} M_{sun}$
- Black holes are important in astrophysics because
 - They allow us to probe extreme conditions and fundamental physics
 - Energetic feedback from AGNs are influential for formation and evolution of galaxies
- Now is a golden age for studying black holes
 - First image of black holes is a direct evidence and allows us to probe physics near the event horizon
 - Detection of gravitational waves open up a brand new way for studying the universe multi-messenger astronomy

