Numerical Simulations

NCTS－TCA Summer Student Program Mini－Workshop 2021

Hsi－Yu Schive（薛熙于）
National Taiwan University

Outline

- Introduction
- (Magneto-)Hydrodynamics
- Self-gravity
- Particles

Why Simulations?

Example: Simulating Cosmic Gas

- Illustris TNG
(https://www.tng-project.org)
- Cosmological magnetohydrodynamic simulations of galaxy formation
- Dark matter and gas
- Radiative cooling and heating, chemical enrichment
- Star formation and feedback
- Black hole formation and feedback
- Magnetic field

Key Physics

- Hydrodynamics
- Magnetic field
- Self-gravity
- Dark matter
- Chemistry
- Radiation transfer
- Cooling, ionization, etc
- Star formation and evolution
- Cosmic rays
- Dust
- Feedback
- Supernovae explosion
- Stellar wind
- SMBH/AGN jets

Key Techniques

- Numerical algorithms
- Parallel computing
- CPU/GPU parallelization
- Data analysis and visualization
- Code co-development
- Debugging
- Data sharing

Advection of a Scalar

- Governing eq. $\frac{\partial u(x, t)}{\partial t}=-v \frac{\partial u(x, t)}{\partial x}$
- Scalar u is simply transported with a velocity v
- Assuming v is constant
- u is conserved $\rightarrow \int u(x, t) d x=$ constant

Finite Difference Approximation

- Discretize space and time

$$
\begin{aligned}
& u(x, t) \Rightarrow u_{j}^{n} \\
& x_{j}=x_{0}+j \Delta x \\
& t_{n}=t_{0}+n \Delta t
\end{aligned}
$$

- Given u_{j}^{n}, solve u_{j}^{n+1}

- Taylor expansion

$$
f(\alpha+\Delta \alpha)=f(\alpha)+f^{\prime}(\alpha) \Delta \alpha+\frac{1}{2!} f^{\prime \prime}(\alpha) \Delta \alpha^{2}+\frac{1}{3!} f^{\prime \prime \prime}(\alpha) \Delta \alpha^{3}+\ldots
$$

- Use it to approximate partial derivatives by discrete u_{j}^{n}
- That's what differentiates different numerical schemes
- May NOT be as trivial as you think!

Forward-Time Central-Space Scheme

- Advection eq. $\frac{\partial u(x, t)}{\partial t}=-v \frac{\partial u(x, t)}{\partial x}$
- FTCS scheme:

Forward-Time Central-Space Scheme

- Explicit scheme
- u_{j}^{n+1} of each j can be computed explicitly from values at $t=t_{n}$
- u_{j}^{n+1} of different j can be computed independently (and thus in parallel)
- In comparison, implicit schemes solve coupled equations of u_{j}^{n+1} with multiple j simultaneously
- For example, check the Crank-Nicolson method
- FTCS scheme is very simple. But, it is UNSTABLE in general for hyperbolic equations!
- It can be demonstrated using the von Neumann stability analysis
- See the next demo

Demo: Advection

FTCS \rightarrow unconditionally unstable

Lax \rightarrow conditionally stable

Complete source code:

- FTCS vs Lax: https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7

Lessons Learned from FTCS

- Numerical errors are dominated by amplitude errors
- Both phase and dispersion errors are negligible
- Amplitude errors increase with time
- Low-k (long-wavelength) errors dominate first
- High-k (short-wavelength) errors appear later but grow faster
- Amplitude increases instead of decreases \rightarrow sign of instability
- Smaller $\Delta t \rightarrow$ errors decrease, but still unstable!
- Is mass conserved?

Lax Scheme

- $u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)$
- Stability criterion: $\Delta t \leq \Delta x / v$
- Courant-Friedrichs-Lewy (CFL) condition

- CFL number: $v \Delta t / \Delta x$
- But why?
- For a time-step Δt, the max distance information can propagate is $v \Delta t$
- But our finite difference scheme only collects data from Δx
- If $v \Delta t>\Delta x$, the correct update requires information more distant than the finite difference scheme knows
- Numerical dissipation: the Lax scheme can be rewritten as

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+\frac{1}{2}\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)
$$

original FTCS scheme

$$
\text { numerical dissipation } \frac{(\Delta x)^{2}}{2 \Delta t} \frac{\partial^{2} u}{\partial x^{2}}
$$

Lax-Wendroff Scheme

- Two-step approaches
- Step 1: evaluate $u_{j+1 / 2}^{n+1 / 2}$ defined at the half time-step $n+1 / 2$ and the cell interface $j+1 / 2$ with the Lax scheme

$$
u_{j+1 / 2}^{n+1 / 2}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j}^{n}\right)-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j}^{n}\right)
$$

- Step 2: use $u_{j+1 / 2}^{n+1 / 2}$ to evaluate the half-step fluxes for the full-step update

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{v \Delta t}{\Delta x}\left(u_{j+1 / 2}^{n+1 / 2}-u_{j-1 / 2}^{n+1 / 2}\right)
$$

Ghost Zones/Grids/Cells

Ghost Zones
Ghost Zones

- Ghost zones are used for setting the boundary conditions
- Physical boundaries (e.g., periodic, outflow, inflow)
- Numerical boundaries between different parallel processes
- Number of ghost zones depends on the stencil size
- Lax-Friedrichs: 1
- Higher-order schemes in general require more ghost zones
- Affect parallel scalability

Hydrodynamics: Governing Equations

- Euler eqs.

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v}) & =0 \\
\frac{\partial(\rho \boldsymbol{v})}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v} \boldsymbol{v}+P \boldsymbol{I}) & =0 \\
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot[(E+P) \boldsymbol{v}] & =0
\end{aligned}
$$

\leftarrow mass conservation
\leftarrow momentum conservation
\leftarrow energy conservation

- $\quad \rho$: mass density, v : velocity, P : pressure, E : total energy density, $\quad I$: identity matrix
$E=e+\frac{1}{2} \rho v^{2}$, where e is the internal energy density
- 6 variables, 5 equations \rightarrow need equation of state to compute P
- For example, ideal gas: $e=\frac{P}{\gamma-1}$, where γ is the ratio of specific heat

Flux-Conservative Form in 1D

- Euler eqs. in a compact flux-conservative form:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\frac{\partial \boldsymbol{F}_{\boldsymbol{x}}}{\partial x}+\frac{\partial \boldsymbol{F}_{\boldsymbol{y}}}{\partial y}+\frac{\partial \boldsymbol{F}_{\boldsymbol{z}}}{\partial z}=0
$$

- F_{x}, F_{y}, F_{z} are the fluxes along different directions

$$
\boldsymbol{F}_{\boldsymbol{x}}=\left[\begin{array}{c}
\rho v_{x} \\
\rho v_{x}^{2}+P \\
\rho v_{x} v_{y} \\
\rho v_{x} v_{z} \\
(E+P) v_{x}
\end{array}\right] \quad \boldsymbol{F}_{\boldsymbol{y}}=\left[\begin{array}{c}
\rho v_{y} \\
\rho v_{y} v_{x} \\
\rho v_{y}^{2}+P \\
\rho v_{y} v_{z} \\
(E+P) v_{y}
\end{array}\right] \quad \boldsymbol{F}_{\boldsymbol{z}}=\left[\begin{array}{c}
\rho v_{z} \\
\rho v_{z} v_{x} \\
\rho v_{z} v_{y} \\
\rho v_{z}^{2}+P \\
(E+P) v_{z}
\end{array}\right]
$$

Finite-Volume Scheme

- Divergence theorem: $\int_{V} \frac{\partial \boldsymbol{U}}{\partial t} d V=-\int_{V}(\boldsymbol{\nabla} \cdot \boldsymbol{F}) d V=-\oint_{S}(\boldsymbol{F} \cdot \boldsymbol{n}) d S$
- Integrate over the cell volume $\Delta x \Delta y \Delta z$ and time interval $\Delta t=t^{n+1}-t^{n}$

$$
\begin{aligned}
& \boldsymbol{U}_{i, j, k}^{n} \equiv \frac{1}{\Delta x \Delta y \Delta z} \int_{z_{k-1 / 2}}^{z_{k+1 / 2}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} U\left(x, y, z, t^{n}\right) d x d y d z \\
& \boldsymbol{F}_{x, i-1 / 2, j, k}^{n+1 / 2} \equiv \frac{1}{\Delta y \Delta z \Delta t} \int_{t^{n}}^{t^{n+1}} \int_{z_{k-1 / 2}}^{z_{k+1 / 2}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} F\left(x_{i-1 / 2}, y, z, t\right) d y d z d t
\end{aligned}
$$

similar for $\boldsymbol{F}_{y, i, j-1 / 2, k}^{n+1 / 2}$ and $\boldsymbol{F}_{z, i, j, k-1 / 2}^{n+1 / 2}$

Finite-Volume Scheme

- Euler eqs. can be casted into the following form:

$$
\begin{aligned}
\boldsymbol{U}_{i, j, k}^{n+1}=\boldsymbol{U}_{i, j, k}^{n} & -\frac{\Delta t}{\Delta x}\left(\boldsymbol{F}_{x, i+1 / 2, j, k}^{n+1 / 2}-\boldsymbol{F}_{x, i-1 / 2, j, k}^{n+1 / 2}\right) \\
& -\frac{\Delta t}{\Delta y}\left(\boldsymbol{F}_{y, i, j+1 / 2, k}^{n+1 / 2}-\boldsymbol{F}_{y, i, j-1 / 2, k}^{n+1 / 2}\right) \\
& -\frac{\Delta t}{\Delta z}\left(\boldsymbol{F}_{z, i, j, k+1 / 2}^{n+1 / 2}-\boldsymbol{F}_{z, i, j, k-1 / 2}^{n+1 / 2}\right)
\end{aligned}
$$

- Note that this form is EXACT!
- No approximation has been made
- $\boldsymbol{U}_{i, j, k}^{n}$: volume-averaged values

Finite-Volume Scheme

- The major task is to compute $\boldsymbol{F}_{x, i-1 / 2, j, k}^{n+1 / 2}$ etc
- Conservative quantities $\boldsymbol{U}_{i, j, k}^{n}$ (i.e., mass, momentum, energy) are guaranteed to conserve to the machine precision!
- It doesn't mean no numerical errors. It means that numerical errors won't contaminate conservation laws.

Lax-Friedrichs Scheme for Hydro

- Lax-Friedrichs scheme can be rewritten into a flux-conservative form

$$
\left.\begin{array}{l}
u_{j}^{n+1}=u_{j}^{n}-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+\frac{1}{2}\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right) \\
u_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{j+1 / 2}^{n}-\tilde{F}_{j-1 / 2}^{n}\right) \\
\tilde{F}_{j-1 / 2}^{n}
\end{array}=\frac{1}{2}\left[\left(v u_{j}^{n}+v u_{j-1}^{n}\right)-\frac{\Delta x}{\Delta t}\left(u_{j}^{n}-u_{j-1}^{n}\right)\right] .\right]\left[\begin{array}{rl}
& =\frac{1}{2}\left[\left(F\left(u_{j}^{n}\right)+F\left(u_{j-1}^{n}\right)\right)-\frac{\Delta x}{\Delta t}\left(u_{j}^{n}-u_{j-1}^{n}\right)\right]
\end{array}\right.
$$

- Hydro: simply evaluate F_{j} with hydrodynamics fluxes
- Courant condition: $\Delta t \leq \frac{\Delta x}{\left|v_{x}\right|+C_{s}} \leftarrow$ sound speed

Sod Shock Tube Problem

Test on Sod Shock Tube Problem

Lax-Friedrichs \rightarrow too diffusive

Lax-Wendroff \rightarrow unphysical oscillations

- Motivate high-resolution shock-capturing schemes

High-Resolution Shock-Capturing Methods

- Godunov method
- Approximate data with a piecewise constant distribution (in practice, higher-order approximations like piecewise linear/parabolic are adopted)
$U(x, t) \uparrow$

- Solve the local Riemann problems
- Piecewise constant data with a single discontinuity
- Apply either exact or approximate solutions
- Update data by averaging the Riemann problem solution over each cell
- Equivalently, we can solve the intercell fluxes

Riemann Problem in 1D Hydro

- Euler eqs. in 1D: $\frac{\partial \boldsymbol{U}}{\partial t}+\frac{\partial \boldsymbol{F}_{x}(\boldsymbol{U})}{\partial x}=0, \boldsymbol{U}=\left[\begin{array}{c}\rho \\ \rho v_{x} \\ E\end{array}\right], \boldsymbol{F}_{x}=\left[\begin{array}{c}\rho v_{x} \\ \rho v_{x}^{2}+P \\ (E+P) v_{x}\end{array}\right]$
- Riemann problem: $\boldsymbol{U}(x, t=0)=\left\{\begin{array}{c}\boldsymbol{U}_{L}=\left[\begin{array}{c}\rho_{L} \\ \rho_{L} v_{x L} \\ E_{L}\end{array}\right], x \leq 0 \\ \boldsymbol{U}_{R}=\left[\begin{array}{c}\rho_{R} \\ \rho_{R} v_{x R} \\ E_{R}\end{array}\right], x>0\end{array}\right.$ left state

Riemann Problem in 1D Hydro

- Exact solution of the Riemann problem involves three waves
- Contact discontinuity
- Shock wave
- Rarefaction wave
- Decompose the entire domain into four regions $\underline{W_{L}, W_{*_{L}}, W_{*_{R}}, W_{R}}$

Demo: Sod Shock Tube

MUSCL-Hancock
Lax-Wendroff

Demo: Sod Shock Tube

MUSCL-Hancock \rightarrow much better!

Lax-Wendroff \rightarrow unphysical oscillations...

Complete source codes:

- MUSCL-Hancock: https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111
- Lax-Wendroff: https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6

Magnetohydrodynamics (MHD)

- Ideal MHD:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0 \\
\frac{\partial(\rho \boldsymbol{v})}{\partial t}+\boldsymbol{\nabla} \cdot\left(\rho \boldsymbol{v} \boldsymbol{v}-\boldsymbol{B} \boldsymbol{B}+P^{*} \boldsymbol{I}\right)=0 \\
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot\left[\left(E+P^{*}\right) \boldsymbol{v}-\boldsymbol{B}(\boldsymbol{B} \cdot \boldsymbol{v})\right]=0 \\
\frac{\partial \boldsymbol{B}}{\partial t}-\boldsymbol{\nabla} \times(\boldsymbol{v} \times \boldsymbol{B})=0
\end{aligned} \leftarrow \leftarrow \text { mass conservation } \quad \leftarrow \text { momentum conservation }
$$

- $E=e+\frac{1}{2} \rho v^{2}+\frac{B^{2}}{2}, P^{*}=P+\frac{B^{2}}{2}$
- 9 variables to be solved by the 8 equations above + equation of state
- Divergence-free constraint on the magnetic field: $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$

Flux-conservative Form for MHD

- $\frac{\partial \boldsymbol{U}}{\partial t}+\frac{\partial \boldsymbol{F}_{\boldsymbol{x}}}{\partial x}+\frac{\partial \boldsymbol{F}_{\boldsymbol{y}}}{\partial y}+\frac{\partial \boldsymbol{F}_{\boldsymbol{z}}}{\partial z}=0$,

$$
\boldsymbol{U}=\left[\begin{array}{c}
\rho \\
\rho v_{x} \\
\rho v_{y} \\
\rho v_{z} \\
E \\
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right], \quad \boldsymbol{F}_{\boldsymbol{x}}=\left[\begin{array}{c}
\rho v_{x} \\
\rho v_{x}^{2}+P^{*}-B_{x}^{2} \\
\rho v_{x} v_{y}-B_{x} B_{y} \\
\rho v_{x} v_{z}-B_{x} B_{z} \\
\left(E+P^{*}\right) v_{x}-B_{x}(\boldsymbol{B} \cdot \boldsymbol{v}) \\
0 \\
v_{x} B_{y}-v_{y} B_{x} \\
v_{x} B_{z}-v_{z} B_{x}
\end{array}\right], \text { similarly for } \boldsymbol{F}_{\boldsymbol{y}}, \boldsymbol{F}_{z}
$$

- Fluid conserved variables can be updated similarly using the finite-volume scheme for pure hydro
- Key question: how to ensure the divergence-free constraint when updating the magnetic field?

Constrained Transport (CT) Method

- Stokes' theorem: $\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d \boldsymbol{A}=\int_{A}[\boldsymbol{\nabla} \times(\boldsymbol{v} \times \boldsymbol{B})] \cdot d \boldsymbol{A}=\oint_{\partial A} \boldsymbol{v} \times \boldsymbol{B} \cdot d \boldsymbol{l}$
- Electromotive force (EMF): $\boldsymbol{\varepsilon}=-\boldsymbol{v} \times \boldsymbol{B}$
- Integrate over cell area (e.g., $\Delta y \Delta z$) and time interval $\Delta t=t^{n+1}-t^{n}$

$$
\begin{aligned}
& B_{x, i-1 / 2, j, k}^{n} \equiv \frac{1}{\Delta y \Delta z} \int_{z_{k-1 / 2}}^{z_{k+1 / 2}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} B_{x}\left(x_{i-1 / 2}, y, z, t^{n}\right) d y d z \\
& \varepsilon_{y, i-1 / 2, j, k-1 / 2}^{n+1 / 2} \equiv \frac{1}{\Delta y \Delta t} \int_{t^{n}}^{t^{n+1}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} \varepsilon_{y}\left(x_{i-1 / 2}, y, z_{k-1 / 2}, t\right) d y d t \\
& \varepsilon_{z, i-1 / 2, j-1 / 2, k}^{n+1 / 2} \equiv \frac{1}{\Delta z \Delta t} \int_{t^{n}}^{t^{n+1}} \int_{z_{k-1 / 2}}^{z_{k+1 / 2}} \varepsilon_{z}\left(x_{i-1 / 2}, y_{j-1 / 2}, z, t\right) d z d t
\end{aligned}
$$

Constrained Transport (CT) Method

$\bullet \begin{aligned} B_{x, i-1 / 2, j, k}^{n+1}=B_{x, i-1 / 2, j, k}^{n} & -\frac{\Delta t}{\Delta y}\left(\varepsilon_{z, i-1 / 2, j+1 / 2, k}^{n+1 / 2}-\varepsilon_{z, i-1 / 2, j-1 / 2, k}^{n+1 / 2}\right) \\ & +\frac{\Delta t}{\Delta z}\left(\varepsilon_{y, i-1 / 2, j, k+1 / 2}^{n+1 / 2}-\varepsilon_{y, i-1 / 2, j, k-1 / 2}^{n+1 / 2}\right)\end{aligned}$

- This form is again exact \rightarrow similar to the finite-volume formulation
- $B_{x, i-1 / 2, j, k}^{n}$: area-averaged magnetic field
- $\varepsilon_{z, i-1 / 2, j \pm 1 / 2, k}^{n+1 / 2}, \varepsilon_{y, i-1 / 2, j, k \pm 1 / 2}^{n+1 / 2}$: time- and line-averaged EMF
- Similar expressions can be derived for $B_{y, i, j-1 / 2, k}^{n+1} \& B_{z, i, j, k-1 / 2}^{n+1}$
- Area-averaged magnetic field are located at the cell faces instead of centers \rightarrow staggered grid

Staggered Grid in CT

Divergence Free in CT

- Finite-volume representation of the divergence-free constraint:

$$
\begin{aligned}
& \frac{1}{\Delta x \Delta y \Delta z} \int_{V_{i, j, k}}\left(\boldsymbol{\nabla} \cdot \boldsymbol{B}^{n}\right) d V=0 \\
& \rightarrow \begin{array}{r}
\left(\boldsymbol{\nabla} \cdot \boldsymbol{B}^{n}\right)_{i, j, k}= \\
\frac{B_{x, i+1 / 2, j, k}^{n}-B_{x, i-1 / 2, j, k}^{n}}{\Delta x} \\
\\
+\frac{B_{y, i, j+1 / 2, k}^{n}-B_{y, i, j-1 / 2, k}^{n}}{\Delta y} \\
\\
\\
+\frac{B_{z, i, j, k+1 / 2}^{n}-B_{z, i, j, k-1 / 2}^{n}}{\Delta z}=0
\end{array}
\end{aligned}
$$

- CT update guarantees $\nabla \cdot B^{n+1}=\nabla \cdot B^{n}$
- Divergence-free constraint is preserved to the machine precision
- But it must be satisfied in the initial condition
- The exact way to compute EMF varies from scheme to scheme

Adaptive Mesh Refinement (AMR)

- Astrophysical simulations require a large dynamic range
- $10^{4}-10^{9}$ spatial scales
- Uniform-resolution simulations become impractical
- AMR: allow resolution to adjust locally and automatically
- Problem-specific refinement criteria

Colliding active galactic nucleus jets using the GAMER code (Sandor, Schive, et al. 2017, ApJ)

Moving Mesh

- Lagrangian instead of Eulerian coordinates
- Galilean invariant
- Unstructured mesh
- Finite-volume scheme

Kelvin-Helmholtz instability simulated with the Arepo code

Self-gravity

- Poisson equation: $\nabla^{2} \phi(\boldsymbol{r})=\rho(\boldsymbol{r})$
- ρ : mass density, Φ : gravitational potential, assuming $4 \pi G=1$
- Task: given ρ in V and Φ at ∂V, where V is the computational domain of interest and ∂V is the boundary \rightarrow solve Φ in V

Given Φ

Given ρ, solve Φ

Self-gravity: Relaxation Methods

- 2D discrete form using a FTCS scheme (assuming $\Delta x=\Delta y=\Delta$):

$$
\frac{\phi_{i, j}^{n+1}-\phi_{i, j}^{n}}{\Delta t}=\frac{1}{\Delta^{2}}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}-4 \phi_{i, j}^{n}\right)-\rho_{i, j}
$$

- CFL stability: $\Delta t \leq \Delta^{2} / 4 \rightarrow$ let $\Delta t=\Delta^{2} / 4$

$$
\phi_{i, j}^{n+1}=\frac{1}{4}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}-\Delta^{2} \rho_{i, j}\right)
$$

\rightarrow Iterate until relaxed (convergence)

Self-gravity: Discrete Fourier Transform

- Poisson eq. in 1D: $\frac{\partial^{2} \phi}{\partial x^{2}}=\rho$
- Fourier transform: $\partial / \partial x \rightarrow i k, \phi(x) \rightarrow \Phi(k), \rho(x) \rightarrow D(k)$
$\Phi(k)=-\frac{D(k)}{k^{2}} \rightarrow \phi(x)=F T^{-1}(\Phi(k))$
- Assuming periodic boundary conditions above
- For isolated (vacuum) boundary conditions, it requires convolution of $\rho(r)$ (with zero padding) and the Green's function r^{-1}

Particles: What Do They Represent?

1. Planets, stars, supernovae, black holes
a. Each particle represents a single point mass
2. Star clusters
a. Each particle represents a bunch of stars
3. Dark matter
a. Finite sampling of the phase space distribution function
b. Can be either collisionless (CDM) or collisional (SIDM)
4. Gas \rightarrow Smooth Particle Hydrodynamics (SPH)
a. Lagrangian nature \rightarrow adaptive resolution
b. Mesh-free
c. Self-gravity can be computed in the same way as other types of particles
5. Tracers
a. Trace the trajectory of gas elements
6. Photons
a. Radiation transfer

Particle Properties

1. Point-mass objects
a. Two-body relaxation may be essential \rightarrow collisional system
b. Gravity diverges at the center \rightarrow numerically challenging
c. Binaries
2. Finite-sized objects
a. Star clusters, dark matter
b. Avoid two-body relaxation and binary formation \rightarrow smooth out gravity in the short range (smoothing/softening length)
3. Particles can be created or destroyed on-the-fly
4. Particle properties may change on-the-fly
a. Mass, age, metalicity, spin, stellar composition, ...
5. Feedback
a. Stellar wind, AGN jets, SN explosion, ...

Computing Self-gravity

- Direct N-body: $\boldsymbol{a}_{i}=G \sum_{j \neq i} m_{j} \frac{\boldsymbol{r}_{\boldsymbol{j}}-\boldsymbol{r}_{\boldsymbol{i}}}{\left|\boldsymbol{r}_{\boldsymbol{j}}-\boldsymbol{r}_{\boldsymbol{i}}\right|^{3}}$
- Computational complexity $O\left(N^{2}\right) \rightarrow$ extremely expensive
- Mostly used when particles represent point masses where very high accuracy is essential
- Particle Mesh (PM)
- Deposit particle mass onto grids \rightarrow grid-base Poisson solver \rightarrow interpolate gravity back to particles
- Tree / Fast Multipole Method
- Multipole expansion \rightarrow Group distant particles into a single large particle (higher-order corrections such as quadrupole can also be included)
- Hybrid Method: $P^{3} \mathbf{M}$, TreePM
- Long range: PM
- Short range: direct N -body ($\mathrm{P}^{3} \mathrm{M}$) or tree (TreePM)
- Be careful about connecting long- and short-range forces

Orbit Integration

- Kick operator K : update velocity while fix position

$$
K(\Delta t)\left[\begin{array}{l}
\boldsymbol{r}(t) \\
\boldsymbol{v}(t)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{r}(t) \\
\boldsymbol{v}(t)+\boldsymbol{a} \Delta t
\end{array}\right]
$$

- Drift operator D : update position while fix velocity

$$
D(\Delta t)\left[\begin{array}{l}
\boldsymbol{r}(t) \\
\boldsymbol{v}(t)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{r}(t)+\boldsymbol{v}(t) \Delta t \\
\boldsymbol{v}(t)
\end{array}\right]
$$

- KDK scheme: $K(\Delta t / 2) D(\Delta t) K(\Delta t / 2)$

$$
\begin{aligned}
\boldsymbol{v}(t+\Delta t / 2) & =\boldsymbol{v}(t)+\boldsymbol{a}(t) \Delta t / 2 \\
\boldsymbol{x}(t+\Delta t) & =\boldsymbol{x}(t)+\boldsymbol{v}(t+\Delta t / 2) \Delta t \\
\boldsymbol{v}(t+\Delta t) & =\boldsymbol{v}(t+\Delta t / 2)+\boldsymbol{a}(t+\Delta t) \Delta t / 2
\end{aligned}
$$

Euler's scheme (1st order)

$$
\begin{aligned}
\boldsymbol{x}(t+\Delta t) & =\boldsymbol{x}(t)+\boldsymbol{v}(t) \Delta t \\
\boldsymbol{v}(t+\Delta t) & =\boldsymbol{v}(t)+\boldsymbol{a}(t) \Delta t
\end{aligned}
$$

- Equivalent to the Leapfrog scheme (2nd order)
- Time reversibility
- Symplectic nature \rightarrow preserve a slightly perturbed Hamiltonian \rightarrow good for long-term evolution
- One force evaluation per time-step

Code Snippets

Euler

DKD

```
# drift: update position by 0.5*dt
    x = x + vx*0.5*dt
    y = y + vy*0.5*dt
# kick: calculate a(t+0.5*dt) and use that
# to update velocity by dt
    r = ( x*x + y*y )**0.5
    a_abs = G*M/(r*r)
    ax = -a_abs*x/r
    ay = -a_abs*y/r
    vx = vx + ax*dt
    vy = vy + ay*dt
# drift: use v(t+dt) to update position
# by another 0.5*dt
    x = x + vx*0.5*dt
    y = y + vy*0.5*dt
```

Complete source codes:

- Euler: https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07
- DKD: https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7

Demo

Euler

DKD

Questions!

