The Present and Future of Gravitational Wave Astrophysics

A short summary of team Taiwan

Albert Kong 江國興 Institute of Astronomy National Tsing Hua University

The first gravitational wave event GW150914

Key Messages from the First Discovery

Gravitational wave is real

- Further confirmation of Einstein's General Relativity
- Black hole is real and multiple black holes can merge together

2017 Nobel Prize in Physics

天文研究所 Institute of Astronomy Weber bar

韋伯棒

Laser Interferometer Gravitational-Wave Observatory (LIGO)

LIGO Hanford Observatory

LIGO Livingston Observatory

Virgo

((O))/VIRGD

Major Discoveries in 2015-2020

- GW from merging binary neutron stars and associated EM counterparts
- GW from neutron star-black hole mergers
- Formation of intermediate-mass black hole
- GW from compact objects in the mass gaps

GW from merging binary neutron stars and associated EM counterparts

• Two in total (GW170817 and GW190425)

- GW170817 is assocated with a short gamma-ray burst and has gamma-ray, X-ray, optical, IR, and radio counterparts
- The combined mass of GW190425 is 3.4 M_●

Formation of Intermediate-mass BHs

• Three in total

- \bullet The most massive one is 142 M $_{\odot}$
 - GW190521 (85+66 M_☉)

Mergers of Neutron Star and Black Hole

• Three in total

天文研究所

One of them has an extreme mass ratio (31 M_☉ BH and 1.2 M_☉ NS)

Mass Gaps

Farmer+ 2019

Localisation is difficult

Localisation is difficult

Kamioka Gravitational Wave Detector KAGRA

火之神神樂 Hinokami Kagura

天文研究所 Institute of Astronomy

梶田隆章教授 Prof. Takaaki Kajita

- NTHU, NTNU, NYCU, NCU, NCKU, TKU, AS/IoP, and NCHC are members of KAGRA
- KAGRA is in a collaboration with LIGO and Virgo (LVK Collaboration)
- All KAGRA members can work inside LVK for data analysis
- KAGRA performed the first science run in April 7-21, 2020
 - Only GEO600 is available. LIGO and Virgo were shut down

Coating of LIGO's mirrors (PI: S. Chao @NTHU)

Squeezing in KAGRA (PI: R.-K. Lee @NTHU)

Coating of LIGO's mirror developed at NTHU

印象清華2022

30

GW Data Analysis in Taiwan

- "Service" data analysis with standard pipelines (NTHU)
 - GRB search (ApJ, 2022, 928, 186)
 - Fast radio burst (FRB) search will start soon
 - Core collapse supernova search
 - Offline parameter estimation
- Waveform development of core collpase supernova (NTHU)
- Machine learning development on GW data analysis
 - Parameter esimation with ML (AS and NTNU)
 - GW detection with ML (NTHU, NYCU, NCKU)
 - DeepClean method on noise reduction (NYCU, NTHU)

Matched filtering technique

Development of Hilbert-Huang Transform (NCUE+NCKU+NTHU)

• HHT search for binary BH mergers

天文研究所

• HHT search for core-collapse supernovae

Core-collapse SNe (K.-C. Pan@NTHU)

- Construction of waveforms of CCSNe via 3D simulations
 - Provided waveforms (s40 models; Pan et al. 2021)

https://git.ligo.org/bursts/supernova/waveforms (with F.-K Thielemann, S. Couch)

- New High-Res. Simulations (in prep.)
- SPH CCSN simulaations (in prep.)
- GPU-based CCSN simulation

- Machine learning methods for CCSN parameter estimation and waveform generation
 - Rotational rates and nuclear EoS estimation

GW Spectrograms of CCSNe

天文研究所 Institute of Astronomy

IIII 國立情華大學 NATIONAL TSING HUA UNIVERSITY

Bayesian Neutral Network on GW Detection

- Ability to assign uncertainty for a possible event
- Low latence alerts
- Possibility for forecasting
- Redesign for noise hunting (e.g. Gravity Spy)

Lin & Wu 2021

GW Background (PI: G.-C. Liu @TKU)

- Development of python based isotropic GWB pipeline
- All sky GWB map making method using Maximum Entropy Method
 - New algorithm to make anisotropic GWB sky map
- Searching intermittent signals using Deep Learning
 - Deep learning method is used to search the intermittent signals
 - Have demonstrated with a toy model. Will update the method to a more realistic case

Public Alerts

Gravitational Wave Events

 \square

天文研究所

GET

Why multi-wavelength and multi-messenger?

Gravitational Wave

Dynamics

天文研究所

- Progenitor mass and nature
- Distance
- Probe of central engine

Electromagnetic Wave

- Localisation
- Physical origin & evolution
- Environment (stellar population, age, gas...)
- Host (if extragalactic)
- Distance
- Increase the confidence of a GW detection

How to trigger?

- A trigger can be in two ways
- GW -> EM

- A quick response is required
- Positions should be sent to telescopes asap (within minutes)
- EM -> GW
 - A targeted search for GW
 - It is not time critical but requires coordination
 - GW data analysis is critical

Constraining the jet structure of GW170917

國立情華大學

Lamb+ 2021; Lin+ 2021

天文研究所 Institute of Astronomy

What do we expect for O4?

- More GW sources with EM counterparts
 - What about systems with BH?
- Physical nature of mass gap sources
- The maximum mass of BH and NS
- BH spin
- GW from exotic binaries such as FRB and magnetar
- Continuous GW from neutron stars
- GW background
- If we are really lucky, GW from a nearby core collapse supernova