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Why Simulations?

Observations

TheoriesSimulations



Example: Simulating Cosmic Gas
● Illustris TNG 

(https://www.tng-project.org)

● Cosmological magnetohydrodynamic 
simulations of galaxy formation

● Dark matter and gas 

● Radiative cooling and heating, 
chemical enrichment

● Star formation and feedback

● Black hole formation and feedback

● Magnetic field

Credit: TNG Collaboration

https://www.tng-project.org/movies/tng/tng50_sb2_gasvel_stars_1080p.mp4

https://www.tng-project.org/
https://docs.google.com/file/d/1sxu4NJkKCWxDqaGxe2XT8LVc2zoXjIB-/preview
https://www.tng-project.org/movies/tng/tng50_sb2_gasvel_stars_1080p.mp4


Example: Simulating Milky Way
● Isolated disk galaxy simulation

○ Similar to our Milky Way
● Physics cycle

Stellar 
population

Star Formation

Self-gravity & 
radiative cooling

Collapse

Adiabatic 
expansion

Rarefaction

Supernovae, 
stellar wind, 
photoionization

Feedback

Credit: Advanced Visualization Laboratory at NCSA
https://www.youtube.com/watch?v=52qIVFNJahc

http://www.youtube.com/watch?v=52qIVFNJahc
https://www.youtube.com/watch?v=52qIVFNJahc


Key Physics
● Hydrodynamics
● Magnetic field
● Gravity
● Dark matter
● Chemistry
● Radiation transfer

○ Cooling, ionization, etc
● Star formation and evolution
● Feedback

○ Supernovae explosion
○ Stellar wind
○ SMBH/AGN jets
○ …

● Multimessenger (cosmic rays, neutrinos, gravitational waves, …)

Thermo-
dynamics

   GR

Nuclear 
Physics

Classical 
Mechanics

Electromag-
netism

Quantum 
Mechanics

Statistical 
mechanics



Key Techniques
● Numerical algorithms

● Parallel computing
○ CPU/GPU parallelization

● Code co-development

● Data analysis and visualization

● Debugging

● Reproducibility
○ Data sharing
○ Open source



● Governing eq.

○ Scalar u is simply transported with a velocity v
○ Assuming v is constant
○ u is conserved ➝

Advection of a Scalar

vΔt (Δt=1 here) 



Finite Difference Approximation
● Discretize space and time

● Given      , solve 

● Taylor expansion

 

○ Use it to approximate partial derivatives by discrete
○ That’s what differentiates different numerical schemes

■ May NOT be as trivial as you think! 



Forward-Time Central-Space Scheme 
● Advection eq. 

● FTCS scheme:
forward-time

↖central-space

(3-point stencil)

↙

errors

↙

↙

LHS: t=n+1 (unknown)
RHS: t=n (known)



Forward-Time Central-Space Scheme 
● Explicit schemes

○         of each j can be computed explicitly from values at tn

○         of different j can be computed independently (i.e., the calculation of 
different          is fully decoupled)
■ Important for parallelization

○ In comparison, implicit schemes solve coupled equations of          with 
multiple j simultaneously
■ For example, check the Crank–Nicolson method 

● FTCS scheme is very simple. But, it is UNSTABLE in general for 
hyperbolic equations!
○ It can be demonstrated using the von Neumann stability analysis
○ See the next demo



Demo: Advection
FTCS ➝ unconditionally unstable Lax ➝ conditionally stable 

Complete source code:
● FTCS vs Lax: https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7

https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7
https://docs.google.com/file/d/1KQkjpXzirfPBPU4Y59WS0uU70HX92R0s/preview
https://docs.google.com/file/d/1KQkjpXzirfPBPU4Y59WS0uU70HX92R0s/preview
https://docs.google.com/file/d/1nn6lO6oGuLyOH-r694IfpCMgsuoyfsuh/preview
https://docs.google.com/file/d/1nn6lO6oGuLyOH-r694IfpCMgsuoyfsuh/preview


Lessons Learned from FTCS 
● Numerical errors are dominated by amplitude errors

○ Both phase and dispersion errors are negligible

● Amplitude errors increase with time
○ Low-k (long-wavelength) errors dominate first
○ High-k (short-wavelength) errors appear later but grow faster
○ Amplitude increases instead of decreases → sign of instability
○ Smaller Δt → errors decrease, but still unstable!

● Is mass conserved?



Lax Scheme
●

● Stability criterion:
○ Courant-Friedrichs-Lewy (CFL) condition
○ CFL number:

● But why?
○ For a time-step Δt, the max distance information can propagate is vΔt
○ But our finite difference scheme only collects data from Δx
○ If                   , the correct update requires information more distant than 

the finite difference scheme knows
● Numerical dissipation: the Lax scheme can be rewritten as            

original FTCS scheme numerical dissipation



Lax-Wendroff Scheme
● Two-step approaches

○ Step 1: evaluate              defined at the half time-step n+1/2 and the cell 
interface j+1/2 with the Lax scheme

 

○ Step 2: use                to evaluate the half-step fluxes for the full-step 
update



Ghost Zones/Grids/Cells

L
dx

Ghost Zones Ghost Zones

● Ghost zones are used for setting the boundary conditions
○ Physical boundaries (e.g., periodic, outflow, inflow)
○ Numerical boundaries between different parallel processes

● Number of ghost zones depends on the stencil size 
○ Lax-Friedrichs: 1
○ Higher-order schemes in general require more ghost zones
○ Affect parallel scalability



Hydrodynamics: Governing Equations
● Euler eqs.

● ρ: mass density, v: velocity, P: pressure, E: total energy density,        I: 
identity matrix 

                    , where e is the internal energy density

● 6 variables, 5 equations ➝ need equation of state to compute P

○ For example, ideal gas:                 , where γ is the ratio of specific heat

← mass conservation

← momentum conservation

← energy conservation



Flux-Conservative Form in 1D
● Euler eqs. in a compact flux-conservative form:

 

 
○ Fx, Fy, Fz are the fluxes along different directions

 



Finite-Volume Scheme
● Divergence theorem: 

● Integrate over the cell volume ΔxΔyΔz and time interval Δt=tn+1 - tn



Finite-Volume Scheme
● Euler eqs. can be casted into the following form:

 

 

 

○ Note that  this form is EXACT!
■ No approximation has been made

○            : volume-averaged values

○                     : time- and area-averaged values y

x

z



Finite-Volume Scheme
● The major task is to compute                   etc

● Conservative quantities           (i.e., mass, momentum, energy) are 
guaranteed to conserve to the machine precision!

● It doesn’t mean no numerical errors. It just means that numerical errors 
won’t contaminate conservation laws.

 



Lax-Friedrichs Scheme for Hydro
● Lax-Friedrichs scheme can be rewritten into a flux-conservative form

● Hydro: simply evaluate Fj with hydrodynamic fluxes

● Courant condition: 
← sound speed



Sod Shock Tube Problem

Initial condition

Left state Right state

rarefaction wave

contact discontinuity

shock wave



Test on Sod Shock Tube Problem

● Motivate high-resolution shock-capturing schemes

Lax-Friedrichs ➝ too diffusive Lax-Wendroff ➝ unphysical oscillations

odd-even decoupling



High-Resolution Shock-Capturing Methods
● Godunov method

○ Approximate data with a piecewise constant distribution (in practice, 
higher-order approximations like piecewise linear/parabolic are adopted)

○ Solve the local Riemann problems
■ Piecewise constant data with a single discontinuity
■ Apply either exact or approximate solutions

○ Update data by averaging the Riemann problem solution over each cell
■ Equivalently, we can solve the intercell fluxes

Riemann problems



Riemann Problem in 1D Hydro
● Euler eqs. in 1D:

● Riemann problem:  
left state

right state



Riemann Problem in 1D Hydro
● Exact solution of the Riemann problem involves three waves

○ Contact discontinuity
○ Shock wave
○ Rarefaction wave

● Decompose the entire domain into four regions WL, W*L, W*R, WR

contact discontinuity 

shock or rarefaction wave

shock or rarefaction wave



Demo: Sod Shock Tube
Lax-WendroffMUSCL-Hancock

https://docs.google.com/file/d/1DMKC4pHWfRV0qatEFr0HuoOXvIP2Ycya/preview
https://docs.google.com/file/d/1DMKC4pHWfRV0qatEFr0HuoOXvIP2Ycya/preview
https://docs.google.com/file/d/1YTrgiS9LW-G7QVIg1A-Y-rAES7nfa5TS/preview
https://docs.google.com/file/d/1YTrgiS9LW-G7QVIg1A-Y-rAES7nfa5TS/preview


Demo: Sod Shock Tube
MUSCL-Hancock ➝ much better! 
oscillations(much better!)

Lax-Wendroff ➝ unphysical oscillations... 

Complete source codes:
● MUSCL-Hancock: https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111
● Lax-Wendroff: https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6

https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111
https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6


Magnetohydrodynamics (MHD)
● Ideal MHD:

 

●  

● 9 variables to be solved by the 8 equations above + equation of state

● Divergence-free constraint on the magnetic field:

 

 

← mass conservation

← momentum conservation

← energy conservation

← induction eq. + ideal Ohm’s law



Flux-conservative Form for MHD
●

 

 

● Fluid conserved variables can be updated similarly using the 
finite-volume scheme for pure hydro

● Key question: how to ensure the divergence-free constraint when 
updating the magnetic field?



Constrained Transport (CT) Method
● Stokes’ theorem:

○ Electromotive force (EMF):  

● Integrate over cell area (e.g., ΔyΔz) and time interval Δt=tn+1 - tn



Constrained Transport (CT) Method
●  

 

○ This form is again exact → similar to the finite-volume formulation

○                 : area-averaged magnetic field

○                                                 : time- and line-averaged EMF

● Similar expressions can be derived for 

● Area-averaged magnetic field are located at the cell faces instead of 
centers → staggered grid



Staggered Grid in CT

x

z

y



Divergence Free in CT
●  Finite-volume representation of the divergence-free constraint:

●  CT update guarantees 
○ Divergence-free constraint is preserved to the machine precision

○ But it must be satisfied in the initial condition
○ The exact way to compute EMF varies from scheme to scheme

exact form



Adaptive Mesh Refinement (AMR)
● Astrophysical simulations require a large dynamic range

○ 104 – 109 spatial scales
○ Uniform-resolution simulations become impractical

● AMR: allow resolution to adjust locally and automatically
○ Problem-specific refinement criteria

Colliding active galactic nucleus jets using the GAMER code (Sandor, Schive, et al. 2017, ApJ)



Moving Mesh

● Lagrangian instead of 
Eulerian coordinates

● Galilean invariant

● Unstructured mesh

● Finite-volume scheme

Kelvin-Helmholtz instability simulated with the Arepo code

http://www.youtube.com/watch?v=nuK9PvlpUNg


● Poisson equation: 

○ ρ: mass density, Φ: gravitational potential, assuming 4πG=1

● Task: given ρ in V and Φ at ∂V, where V is the computational domain 
of interest and ∂V is the boundary → solve Φ in V

Self-gravity

Given Φ

Given ρ, solveΦ



Self-gravity: Relaxation Methods
●  

○ Let the system relax until equilibrium is established

○ 2D discrete form using a FTCS scheme (assuming Δx=Δy=Δ):

○ CFL stability:   

→ Iterate until relaxed (convergence) Jacobi’s method

Diffusion eq. with source -ρ



Self-gravity: Discrete Fourier Transform
● Poisson eq. in 1D:

● Fourier transform:

 
○ Assuming periodic boundary conditions above
○ For isolated (vacuum) boundary conditions, it requires convolution of ρ(r) 

(with zero padding) and the Green’s function r-1  



1. Planets, stars, supernovae, black holes
a. Each particle represents a single point mass

2. Star clusters
a. Each particle represents a bunch of stars

3. Dark matter
a. Finite sampling of the phase space distribution function
b. Can be either collisionless (CDM) or collisional (SIDM)

4. Gas → Smooth Particle Hydrodynamics (SPH)
a. Lagrangian nature → adaptive resolution
b. Mesh-free
c. Self-gravity can be computed in the same way as other types of particles

5. Tracers
a. Trace the trajectory of gas elements

6. Photons
a. Radiation transfer

Particles: What Do They Represent?



1. Point-mass objects
a. Two-body relaxation may be essential → collisional system 
b. Gravity diverges at the center → numerically challenging
c. Binaries

2. Finite-sized objects
a. Star clusters, dark matter
b. Avoid two-body relaxation and binary formation → smooth out gravity in 

the short range (smoothing/softening length)
3. Particles can be created, destroyed, or scattered on-the-fly
4. Particle properties may change on-the-fly

a. Mass, age, metalicity, spin, stellar composition, ...
5. Feedback

a. Stellar wind, AGN jets, SN explosion, ...

Particle Properties



Computing Self-gravity
● Direct N-body:

○ Computational complexity O(N2) → extremely expensive
○ Mostly used when particles represent point masses where very high 

accuracy is essential
● Particle Mesh (PM)

○ Deposit particle mass onto grids → grid-base Poisson solver → 
interpolate gravity back to particles

● Tree / Fast Multipole Method
○ Multipole expansion → Group distant particles into a single large particle 

(higher-order corrections such as quadrupole can also be included)

● Hybrid Method: P3M, TreePM
○ Long range: PM
○ Short range: direct N-body (P3M) or tree (TreePM)
○ Be careful about connecting long- and short-range forces



Orbit Integration
● Kick operator K: update velocity while fixing position

● Drift operator D: update position while fixing velocity

 
● KDK scheme: K(Δt/2) D(Δt) K(Δt/2)

 

○ Equivalent to the Leapfrog scheme (2nd order)
○ Time reversibility
○ Symplectic nature → preserve a slightly perturbed Hamiltonian → good for 

long-term evolution
○ One force evaluation per time-step

Euler’s scheme (1st order) 



Code Snippets
#     calculate a(t)

      r     = ( x*x + y*y )**0.5

      a_abs = G*M/(r*r)

      ax    = -a_abs*x/r

      ay    = -a_abs*y/r

#     use v(t) and a(t) to update position

#     and velocity by dt

      x  = x + vx*dt

      y  = y + vy*dt

      vx = vx + ax*dt

      vy = vy + ay*dt

#     drift: update position by 0.5*dt

      x = x + vx*0.5*dt

      y = y + vy*0.5*dt

#     kick: calculate a(t+0.5*dt) and use that

# to update velocity by dt

      r     = ( x*x + y*y )**0.5

      a_abs = G*M/(r*r)

      ax    = -a_abs*x/r

      ay    = -a_abs*y/r

      vx    = vx + ax*dt

      vy    = vy + ay*dt

#     drift: use v(t+dt) to update position

#     by another 0.5*dt

      x = x + vx*0.5*dt

      y = y + vy*0.5*dt

Euler DKD

⟸ Be careful about the   
        order of update

Complete source codes:
● Euler: https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07
● DKD: https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7

https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07
https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7


Demo
Euler DKD

https://docs.google.com/file/d/1S-vj_QEi4TPn1wI92h-poZgJCAuxTKvh/preview
https://docs.google.com/file/d/1S-vj_QEi4TPn1wI92h-poZgJCAuxTKvh/preview
https://docs.google.com/file/d/17bpQAe-aiERyK81J0dwZv26rLYzTeKxw/preview
https://docs.google.com/file/d/17bpQAe-aiERyK81J0dwZv26rLYzTeKxw/preview


Questions!


