
Numerical Simulations

Hsi-Yu Schive (薛熙于)
National Taiwan University

NCTS-TCA Summer Student Program
Mini-Workshop 2023

Outline
● Introduction

● (Magneto-)Hydrodynamics

● Self-gravity

● Particles

Why Simulations?

Observations

TheoriesSimulations

Example: Simulating Cosmic Gas
● Illustris TNG

(https://www.tng-project.org)

● Cosmological magnetohydrodynamic
simulations of galaxy formation

● Dark matter and gas

● Radiative cooling and heating,
chemical enrichment

● Star formation and feedback

● Black hole formation and feedback

● Magnetic field

Credit: TNG Collaboration

https://www.tng-project.org/movies/tng/tng50_sb2_gasvel_stars_1080p.mp4

https://www.tng-project.org/
https://docs.google.com/file/d/1sxu4NJkKCWxDqaGxe2XT8LVc2zoXjIB-/preview
https://www.tng-project.org/movies/tng/tng50_sb2_gasvel_stars_1080p.mp4

Example: Simulating Milky Way
● Isolated disk galaxy simulation

○ Similar to our Milky Way
● Physics cycle

Stellar
population

Star Formation

Self-gravity &
radiative cooling

Collapse

Adiabatic
expansion

Rarefaction

Supernovae,
stellar wind,
photoionization

Feedback

Credit: Advanced Visualization Laboratory at NCSA
https://www.youtube.com/watch?v=52qIVFNJahc

http://www.youtube.com/watch?v=52qIVFNJahc
https://www.youtube.com/watch?v=52qIVFNJahc

Key Physics
● Hydrodynamics
● Magnetic field
● Gravity
● Dark matter
● Chemistry
● Radiation transfer

○ Cooling, ionization, etc
● Star formation and evolution
● Feedback

○ Supernovae explosion
○ Stellar wind
○ SMBH/AGN jets
○ …

● Multimessenger (cosmic rays, neutrinos, gravitational waves, …)

Thermo-
dynamics

 GR

Nuclear
Physics

Classical
Mechanics

Electromag-
netism

Quantum
Mechanics

Statistical
mechanics

Key Techniques
● Numerical algorithms

● Parallel computing
○ CPU/GPU parallelization

● Code co-development

● Data analysis and visualization

● Debugging

● Reproducibility
○ Data sharing
○ Open source

● Governing eq.

○ Scalar u is simply transported with a velocity v
○ Assuming v is constant
○ u is conserved ➝

Advection of a Scalar

vΔt (Δt=1 here)

Finite Difference Approximation
● Discretize space and time

● Given , solve

● Taylor expansion

○ Use it to approximate partial derivatives by discrete
○ That’s what differentiates different numerical schemes

■ May NOT be as trivial as you think!

Forward-Time Central-Space Scheme
● Advection eq.

● FTCS scheme:
forward-time

↖central-space

(3-point stencil)

↙

errors

↙

↙

LHS: t=n+1 (unknown)
RHS: t=n (known)

Forward-Time Central-Space Scheme
● Explicit schemes

○ of each j can be computed explicitly from values at tn

○ of different j can be computed independently (i.e., the calculation of
different is fully decoupled)
■ Important for parallelization

○ In comparison, implicit schemes solve coupled equations of with
multiple j simultaneously
■ For example, check the Crank–Nicolson method

● FTCS scheme is very simple. But, it is UNSTABLE in general for
hyperbolic equations!
○ It can be demonstrated using the von Neumann stability analysis
○ See the next demo

Demo: Advection
FTCS ➝ unconditionally unstable Lax ➝ conditionally stable

Complete source code:
● FTCS vs Lax: https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7

https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7
https://docs.google.com/file/d/1KQkjpXzirfPBPU4Y59WS0uU70HX92R0s/preview
https://docs.google.com/file/d/1KQkjpXzirfPBPU4Y59WS0uU70HX92R0s/preview
https://docs.google.com/file/d/1nn6lO6oGuLyOH-r694IfpCMgsuoyfsuh/preview
https://docs.google.com/file/d/1nn6lO6oGuLyOH-r694IfpCMgsuoyfsuh/preview

Lessons Learned from FTCS
● Numerical errors are dominated by amplitude errors

○ Both phase and dispersion errors are negligible

● Amplitude errors increase with time
○ Low-k (long-wavelength) errors dominate first
○ High-k (short-wavelength) errors appear later but grow faster
○ Amplitude increases instead of decreases → sign of instability
○ Smaller Δt → errors decrease, but still unstable!

● Is mass conserved?

Lax Scheme
●

● Stability criterion:
○ Courant-Friedrichs-Lewy (CFL) condition
○ CFL number:

● But why?
○ For a time-step Δt, the max distance information can propagate is vΔt
○ But our finite difference scheme only collects data from Δx
○ If , the correct update requires information more distant than

the finite difference scheme knows
● Numerical dissipation: the Lax scheme can be rewritten as

original FTCS scheme numerical dissipation

Lax-Wendroff Scheme
● Two-step approaches

○ Step 1: evaluate defined at the half time-step n+1/2 and the cell
interface j+1/2 with the Lax scheme

○ Step 2: use to evaluate the half-step fluxes for the full-step
update

Ghost Zones/Grids/Cells

L
dx

Ghost Zones Ghost Zones

● Ghost zones are used for setting the boundary conditions
○ Physical boundaries (e.g., periodic, outflow, inflow)
○ Numerical boundaries between different parallel processes

● Number of ghost zones depends on the stencil size
○ Lax-Friedrichs: 1
○ Higher-order schemes in general require more ghost zones
○ Affect parallel scalability

Hydrodynamics: Governing Equations
● Euler eqs.

● ρ: mass density, v: velocity, P: pressure, E: total energy density, I:
identity matrix

 , where e is the internal energy density

● 6 variables, 5 equations ➝ need equation of state to compute P

○ For example, ideal gas: , where γ is the ratio of specific heat

← mass conservation

← momentum conservation

← energy conservation

Flux-Conservative Form in 1D
● Euler eqs. in a compact flux-conservative form:

○ Fx, Fy, Fz are the fluxes along different directions

Finite-Volume Scheme
● Divergence theorem:

● Integrate over the cell volume ΔxΔyΔz and time interval Δt=tn+1 - tn

Finite-Volume Scheme
● Euler eqs. can be casted into the following form:

○ Note that this form is EXACT!
■ No approximation has been made

○ : volume-averaged values

○ : time- and area-averaged values y

x

z

Finite-Volume Scheme
● The major task is to compute etc

● Conservative quantities (i.e., mass, momentum, energy) are
guaranteed to conserve to the machine precision!

● It doesn’t mean no numerical errors. It just means that numerical errors
won’t contaminate conservation laws.

Lax-Friedrichs Scheme for Hydro
● Lax-Friedrichs scheme can be rewritten into a flux-conservative form

● Hydro: simply evaluate Fj with hydrodynamic fluxes

● Courant condition:
← sound speed

Sod Shock Tube Problem

Initial condition

Left state Right state

rarefaction wave

contact discontinuity

shock wave

Test on Sod Shock Tube Problem

● Motivate high-resolution shock-capturing schemes

Lax-Friedrichs ➝ too diffusive Lax-Wendroff ➝ unphysical oscillations

odd-even decoupling

High-Resolution Shock-Capturing Methods
● Godunov method

○ Approximate data with a piecewise constant distribution (in practice,
higher-order approximations like piecewise linear/parabolic are adopted)

○ Solve the local Riemann problems
■ Piecewise constant data with a single discontinuity
■ Apply either exact or approximate solutions

○ Update data by averaging the Riemann problem solution over each cell
■ Equivalently, we can solve the intercell fluxes

Riemann problems

Riemann Problem in 1D Hydro
● Euler eqs. in 1D:

● Riemann problem:
left state

right state

Riemann Problem in 1D Hydro
● Exact solution of the Riemann problem involves three waves

○ Contact discontinuity
○ Shock wave
○ Rarefaction wave

● Decompose the entire domain into four regions WL, W*L, W*R, WR

contact discontinuity

shock or rarefaction wave

shock or rarefaction wave

Demo: Sod Shock Tube
Lax-WendroffMUSCL-Hancock

https://docs.google.com/file/d/1DMKC4pHWfRV0qatEFr0HuoOXvIP2Ycya/preview
https://docs.google.com/file/d/1DMKC4pHWfRV0qatEFr0HuoOXvIP2Ycya/preview
https://docs.google.com/file/d/1YTrgiS9LW-G7QVIg1A-Y-rAES7nfa5TS/preview
https://docs.google.com/file/d/1YTrgiS9LW-G7QVIg1A-Y-rAES7nfa5TS/preview

Demo: Sod Shock Tube
MUSCL-Hancock ➝ much better!
oscillations(much better!)

Lax-Wendroff ➝ unphysical oscillations...

Complete source codes:
● MUSCL-Hancock: https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111
● Lax-Wendroff: https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6

https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111
https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6

Magnetohydrodynamics (MHD)
● Ideal MHD:

●

● 9 variables to be solved by the 8 equations above + equation of state

● Divergence-free constraint on the magnetic field:

← mass conservation

← momentum conservation

← energy conservation

← induction eq. + ideal Ohm’s law

Flux-conservative Form for MHD
●

● Fluid conserved variables can be updated similarly using the
finite-volume scheme for pure hydro

● Key question: how to ensure the divergence-free constraint when
updating the magnetic field?

Constrained Transport (CT) Method
● Stokes’ theorem:

○ Electromotive force (EMF):

● Integrate over cell area (e.g., ΔyΔz) and time interval Δt=tn+1 - tn

Constrained Transport (CT) Method
●

○ This form is again exact → similar to the finite-volume formulation

○ : area-averaged magnetic field

○ : time- and line-averaged EMF

● Similar expressions can be derived for

● Area-averaged magnetic field are located at the cell faces instead of
centers → staggered grid

Staggered Grid in CT

x

z

y

Divergence Free in CT
● Finite-volume representation of the divergence-free constraint:

● CT update guarantees
○ Divergence-free constraint is preserved to the machine precision

○ But it must be satisfied in the initial condition
○ The exact way to compute EMF varies from scheme to scheme

exact form

Adaptive Mesh Refinement (AMR)
● Astrophysical simulations require a large dynamic range

○ 104 – 109 spatial scales
○ Uniform-resolution simulations become impractical

● AMR: allow resolution to adjust locally and automatically
○ Problem-specific refinement criteria

Colliding active galactic nucleus jets using the GAMER code (Sandor, Schive, et al. 2017, ApJ)

Moving Mesh

● Lagrangian instead of
Eulerian coordinates

● Galilean invariant

● Unstructured mesh

● Finite-volume scheme

Kelvin-Helmholtz instability simulated with the Arepo code

http://www.youtube.com/watch?v=nuK9PvlpUNg

● Poisson equation:

○ ρ: mass density, Φ: gravitational potential, assuming 4πG=1

● Task: given ρ in V and Φ at ∂V, where V is the computational domain
of interest and ∂V is the boundary → solve Φ in V

Self-gravity

Given Φ

Given ρ, solveΦ

Self-gravity: Relaxation Methods
●

○ Let the system relax until equilibrium is established

○ 2D discrete form using a FTCS scheme (assuming Δx=Δy=Δ):

○ CFL stability:

→ Iterate until relaxed (convergence) Jacobi’s method

Diffusion eq. with source -ρ

Self-gravity: Discrete Fourier Transform
● Poisson eq. in 1D:

● Fourier transform:

○ Assuming periodic boundary conditions above
○ For isolated (vacuum) boundary conditions, it requires convolution of ρ(r)

(with zero padding) and the Green’s function r-1

1. Planets, stars, supernovae, black holes
a. Each particle represents a single point mass

2. Star clusters
a. Each particle represents a bunch of stars

3. Dark matter
a. Finite sampling of the phase space distribution function
b. Can be either collisionless (CDM) or collisional (SIDM)

4. Gas → Smooth Particle Hydrodynamics (SPH)
a. Lagrangian nature → adaptive resolution
b. Mesh-free
c. Self-gravity can be computed in the same way as other types of particles

5. Tracers
a. Trace the trajectory of gas elements

6. Photons
a. Radiation transfer

Particles: What Do They Represent?

1. Point-mass objects
a. Two-body relaxation may be essential → collisional system
b. Gravity diverges at the center → numerically challenging
c. Binaries

2. Finite-sized objects
a. Star clusters, dark matter
b. Avoid two-body relaxation and binary formation → smooth out gravity in

the short range (smoothing/softening length)
3. Particles can be created, destroyed, or scattered on-the-fly
4. Particle properties may change on-the-fly

a. Mass, age, metalicity, spin, stellar composition, ...
5. Feedback

a. Stellar wind, AGN jets, SN explosion, ...

Particle Properties

Computing Self-gravity
● Direct N-body:

○ Computational complexity O(N2) → extremely expensive
○ Mostly used when particles represent point masses where very high

accuracy is essential
● Particle Mesh (PM)

○ Deposit particle mass onto grids → grid-base Poisson solver →
interpolate gravity back to particles

● Tree / Fast Multipole Method
○ Multipole expansion → Group distant particles into a single large particle

(higher-order corrections such as quadrupole can also be included)

● Hybrid Method: P3M, TreePM
○ Long range: PM
○ Short range: direct N-body (P3M) or tree (TreePM)
○ Be careful about connecting long- and short-range forces

Orbit Integration
● Kick operator K: update velocity while fixing position

● Drift operator D: update position while fixing velocity

● KDK scheme: K(Δt/2) D(Δt) K(Δt/2)

○ Equivalent to the Leapfrog scheme (2nd order)
○ Time reversibility
○ Symplectic nature → preserve a slightly perturbed Hamiltonian → good for

long-term evolution
○ One force evaluation per time-step

Euler’s scheme (1st order)

Code Snippets
calculate a(t)

 r = (x*x + y*y)**0.5

 a_abs = G*M/(r*r)

 ax = -a_abs*x/r

 ay = -a_abs*y/r

use v(t) and a(t) to update position

and velocity by dt

 x = x + vx*dt

 y = y + vy*dt

 vx = vx + ax*dt

 vy = vy + ay*dt

drift: update position by 0.5*dt

 x = x + vx*0.5*dt

 y = y + vy*0.5*dt

kick: calculate a(t+0.5*dt) and use that

to update velocity by dt

 r = (x*x + y*y)**0.5

 a_abs = G*M/(r*r)

 ax = -a_abs*x/r

 ay = -a_abs*y/r

 vx = vx + ax*dt

 vy = vy + ay*dt

drift: use v(t+dt) to update position

by another 0.5*dt

 x = x + vx*0.5*dt

 y = y + vy*0.5*dt

Euler DKD

⟸ Be careful about the
 order of update

Complete source codes:
● Euler: https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07
● DKD: https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7

https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07
https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7

Demo
Euler DKD

https://docs.google.com/file/d/1S-vj_QEi4TPn1wI92h-poZgJCAuxTKvh/preview
https://docs.google.com/file/d/1S-vj_QEi4TPn1wI92h-poZgJCAuxTKvh/preview
https://docs.google.com/file/d/17bpQAe-aiERyK81J0dwZv26rLYzTeKxw/preview
https://docs.google.com/file/d/17bpQAe-aiERyK81J0dwZv26rLYzTeKxw/preview

Questions!

