

Cosmological Structure Formation: From the Big Bang to the Present Day

Yong Tian National Central University

5 July 2023, NCTS-TCA Summer Student Program, Taipei

Standard Cosmology

- Expanding universe
- ACDM accelerating universe with cold dark matter (CDM)
- Bottom-up structure formation
- Galaxies, galaxy clusters, larger cosmic structures
- Challenges

Cluster

Bootes

Hydra

61,200

The Possible Origins of the Redshift?

Doppler Effect

The Doppler effect is the shift in the frequency of a wave in relation to an observer due to relative motion of the wave source and observer.

Tired Light

Fritz Zwicky 1898 - 1974

- **Tired light** is a class of hypothetical redshift mechanisms that was proposed as an alternative explanation for the redshift-distance relationship.
- The concept was first proposed in 1929 by <u>Fritz</u> <u>Zwicky</u>, suggesting that photons lost energy over time through collisions with other particles in a regular way.
- Tired light has been proposed as the Steady State cosmologies.

"Tired-Light" Hypothesis Gets Re-Tired

	Galaxies	Young, distant Galactic motion galaxies are		Redshift is due to		
Expanding Universe theory	move apart	brighter	spread out	galactic motion		
				Earth		
"Tired-Light" theory	stay put	no brighter	(no effect)	unexplained energy loss		

Beyond the fringe. "Tired light"--a radical alternative to the standard expanding-universe model of the cosmos--has just failed two crucial tests.

Science/News, 2001

Hubble Law

Figure 1: Edwin Hubble with a model of the proposed 200-in telescope, this is a cropped version of a photograph that appeared in the *New York Sun* on 18 June 1931 (adapted from citizensvoice.com/news/silvered-stargazer-1.1869195).

Helge Kragh, *Journal of Astronomical History and Heritage*, 20(1), 2–12 (2017).

Possible Models of the Expanding Universe

(right) is older still. The rate of expansion actually increases because of a repulsive force that pushes galaxies apart.

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, **112**:1284–1299, 2000 October © 2000. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

Invited Review

The Case for an Accelerating Universe from Supernovae

ADAM G. RIESS^{1,2} Received 2000 May 4; accepted 2000 May 5

The Big Bang

Expanding Universe

https://www.science-sparks.com/

Implication of Big Bang Theory:

Cosmic Microwave Background (CMB)

Cosmic Microwave Background

In 1964, <u>Arno Penzias</u> and <u>Robert Wilson</u> at Bell Telephone Laboratories made their first measurement clearly showing the presence of the microwave background

Cosmic Microwave Background

CMB – PLANK

Standard Cosmology

- Expanding universe
- ACDM accelerating universe with cold dark matter (CDM)
- Bottom-up structure formation
- Galaxies, galaxy clusters, larger cosmic structures
- Challenges

Jan Oort 1900 - 1902 In 1932, Oort found that the mass obtained from the dynamics was three times greater than that of the luminous matter in Milky Way. Oort introduced the concept of "dark matter" for the first time.

180 Credit : NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

2022/11/01

Computer Simulation

Fritz Zwicky 1898 - 1974 In 1933, Zwicky discovered that the galaxies on the outskirts of the Coma Cluster were moving too fast, and the gravitational pull provided by the luminous matter was not sufficient to bind these galaxies.

Flat Rotation Curve

"Dark Matter" (DM)

- A hypothetical form of matter invisible to electromagnetic radiation, postulated to account for gravitational forces observed in the universe.
- Dark Matter Span 90 Orders of Magnitude in Mass.
- None has been directly detected!

Beyond standard model in particle physics

Modified Newtonian Dynamics (MOND)

Mordehai Milgrom Israeli Physicist 1946 - Proposed by Milgrom in 1983 $\mu\left(\left|\frac{g_{obs}}{a_0}\right|\right)g_{obs} = g_{bar}$ i. as $g_{obs} \gg a_0$, $\mu\left(\left|\frac{g_{obs}}{a_0}\right|\right) \approx 1$ ii. as $g_{obs} \ll a_0$, $\mu\left(\left|\frac{g_{obs}}{a_0}\right|\right) \approx \left|\frac{g_{obs}}{a_0}\right|$ where $a_0 = 1.2 \times 10^{-10} ms^{-2}$

Beyond Newtonian Dynamics and General Relativity

"Missing Mass Problem"

Definitions of two accelerations:

Newton's lawNewton's gravity $g_{obs} \equiv |-\nabla \Phi_{obs}|$ =? $g_{bar} \equiv \frac{GM_{bar}(< r)}{r^2}$

Asumming g_{obs} = g_{bar}, mass discrepnacy is expected.
 "dark matter" is introduced to resolve the insufficient baryonic mass.
 What if g_{obs} ≠ g_{bar}? Acceleration discrepancy instead.

PRL 117, 201101 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 11 NOVEMBER 2016

Ś

Radial Acceleration Relation in Rotationally Supported Galaxies

Stacy S. McGaugh and Federico Lelli Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA

James M. Schombert Department of Physics, University of Oregon, Eugene, Oregon 97403, USA (Received 18 May 2016; revised manuscript received 7 July 2016; published 9 November 2016)

"Missing Mass" in Galaxy Cluster

Galaxy Cluster: IDCS J1426

X-ray gas

member galaxies

Brightest Cluster Galaxy (BCG)

Components	Mass fraction
Galaxies	1%
X-ray Gas	9%
Missing Mass	90%

19 January 2023

Gravitational Lensing

galaxy

galaxy cluster

lensed galaxy images

distorted light-rays

Earth

28

Galaxy Clusters – Weak Lensing

CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS*

KEIICHI UMETSU¹, ADI ZITRIN^{2,10}, DANIEL GRUEN^{3,4,5,6,11}, JULIAN MERTEN⁷, MEGAN DONAHUE⁸, AND MARC POSTMAN⁹ Institute of Astronomy and Astrophysics. Academia Sinica. P. O. Box 23-141. Taipei 10617. Taiwan: keiichi@asiaa.sinica.edu.tw

Lensing RAR on Cluster Scales?

The Radial Acceleration Relation in CLASH Galaxy Clusters

Standard Cosmology

- Expanding universe
- **ACDM** accelerating universe with cold dark matter (CDM)
- Bottom-up structure formation
- Galaxies, galaxy clusters, larger cosmic structures
- Challenges

Navarro–Frenk–White (NFW) Profile

Universal density profile

$$\rho(r) = \frac{\rho_S}{\frac{r}{r_S}(1+\frac{r}{r_S})^2}$$

J. Navarro, C. Frenk and S. White, APJ, 462, 563 (1996)

Bottom-up Structure Formation

In a bottom-up scenario, small, dwarf galaxy-sized lumps form first, then merger to make galaxies and clusters of galaxies.

Hierarchical growth

Image: EAGLE simulation

Standard Cosmology

- Expanding universe
- ΛCDM an accelerating universe with cold dark matter (CDM)
- Bottom-up structure formation
- Galaxies, galaxy clusters, larger cosmic structures
- Challenges

Galaxies

Dwarf galaxies

Spiral galaxies

Elliptical galaxies

Hubble Tuning Fork

Galaxy Formation and Evolutions

Galaxies are believed to have formed through the merging of small galaxies and star clusters. Figure C shows large star clusters found at a distance of 5000 Mpc. They might be precursors of galaxies.

Galaxy Formation and Evolutions

Images Credit: The IllustrisTNG Project www.tng-project.org

Gravitational Bound Systems

- I. Solar Systems
- I. Galaxies
 - Dwarf Galaxies
 - Spiral Galaxies
 - Elliptical Galaxies

II. Cluster of Galaxies (Galaxy Clusters)

Larger cosmic structures

- Superclusters
- Galaxy filaments form massive, thread-like structures on the order of millions of light-years. Computer simulation.

Challenges of Modern Cosmology

- Dark Matter and Dark Energy
- Cosmic Microwave Background (CMB) Anomalies
- Hubble Tension
- Massive Galaxies at high redshift

Hubble Tension

Whisker plot showing different measurements of the Hubble constant. The final measured Hubble constant of this paper was $H_0 = 74.2$ (the 5th line in the *Lensing related, mass model-dependent* section of this plot), which agrees with measurements from Cepheid stars, but disagrees with early Universe measurements from the CMB. [Figure 2 of <u>Di</u> <u>Valentino et al. 2021</u>]

CMB with Planck

Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60 – Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54 –

CMB without Planck -

Aiola et al. (2020), ACT: 67.9 ± 1.5 Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 Zhang, Huang (2019), WMAP9+BAO: $68.36^{+0.52}_{-0.52}$

No CMB, with BBN

lvanov et al. (2020), BOSS+BBN: 67.9 ± 1.1 Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97

Cepheids – SNIa

- Riess et al. (2020), R20: 73.2 ± 1.3 Breuval et al. (2020): 72.8 ± 2.7 Riess et al. (2019), R19: 74.0 ± 1.4 Camarena, Marra (2019): 75.4 ± 1.7 Burns et al. (2018): 73.2 ± 2.3 Follin, Knox (2017): 73.3 ± 1.7 Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8 Riess et al. (2016), R16: 73.2 ± 1.7 Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1 Freedman et al. (2012): 74.3 ± 2.1 TRGB – SNIa
- TRGB SNIa
 –

 Soltis, Casertano, Riess (2020): 72.1 ± 2.0
 –

 Freedman et al. (2020): 69.6 ± 1.9
 –

 Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.9
 –

 Freedman et al. (2019): 69.8 ± 1.9
 –

 Yuan et al. (2019): 72.4 ± 2.0
 –

 Jang, Lee (2017): 71.2 ± 2.5
 –

Masers

Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR)

Kourkchi et al. (2020): 76.0 \pm 2.6 Schombert, McGaugh, Lelli (2020): 75.1 \pm 2.8

Surface Brightness Fluctuations

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Lensing related, mass model – dependent

- Millon et al. (2020), TDCOSMO: 74.2 ± 1.6 Qi et al. (2020): $73.6^{+1.6}_{-1.6}$ – Liao et al. (2020): $72.8^{+1.7}_{-1.7}$ –
 - Liao et al. (2019): 72.2 ± 2.1
- Shajib et al. (2019), STRIDES: 74.2^{+2.7}
- Wong et al. (2019), H0LiCOW 2019: 73.3^{+1.7}
- Birrer et al. (2018), H0LiCOW 2018: $72.5^{+2.1}_{-2.3}$
- Bonvin et al. (2016), H0LiCOW 2016: $71.9^{+2.4}_{-3.0}$

Optimist average

65

70

75

80

- Di Valentino (2021): 72.94 ± 0.75 Ultra – conservative, no Cepheids, no lensing
 - Di Valentino (2021): 72.7 ± 1.1

James Webb Space Telescope (JWST)

Objectives:

- Observe the universe in infrared light for breakthrough discoveries
- Study star and galaxy formation, including early galaxies
- Investigate exoplanets and their atmospheres for signs of habitability

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Early Results from GLASS-JWST. III. Galaxy Candidates at $z \sim 9-15^*$

Marco Castellano¹^(b), Adriano Fontana¹^(b), Tommaso Treu²^(b), Paola Santini¹^(b), Emiliano Merlin¹^(b), Nicha Leethochawalit^{3,4,5}^(b), Michele Trenti^{3,4}^(b), Eros Vanzella⁶^(b), Uros Mestric⁶^(b), Andrea Bonchi⁷, Davide Belfiori¹, Mario Nonino⁸^(b), Diego Paris¹^(b),

ID	R.A. (deg.)	Decl. (deg.)	F444W	ZEAZY	Z_{zphot}	$M_{ m UV}$	β	$\frac{\text{SFR}}{(M_{\odot} \text{ yr}^{-1})}$	R _e (kpc)	Selection
GHZ1	3.511929	-30.371848	26.36 ± 0.05	10.53	10.63	-20.98 ± 0.06	-1.99 ± 0.10	25^{+68}_{-16}	0.43 ± 0.02	(1), (2)
GHZ2 ^b	3.498985	-30.324771	27.21 ± 0.20	12.11	12.30	-21.19 ± 0.20	-3.00 ± 0.12	20^{+14}_{-13}	0.12 ± 0.01	(2)
GHZ3	3.528937	-30.363811	26.73 ± 0.07	2.69	9.33	-20.69 ± 0.09	-1.85 ± 0.17	31^{+10}_{-8}	0.88 ± 0.09	(1), (2)
GHZ4	3.513743	-30.351554	27.74 ± 0.12	10.08	9.93	-19.98 ± 0.27	-2.86 ± 0.55	5^{+19}_{-3}	0.39 ± 0.09	(1), (2)
GHZ5	3.494437	-30.307620	27.25 ± 0.08	2.49	9.20	-20.17 ± 0.18	-1.82 ± 0.33	18^{+21}_{-15}	0.21 ± 0.08	(1)
GHZ6	3.479054	-30.314925	$\textbf{27.43} \pm \textbf{0.11}$	9.85	9.05	-19.66 ± 0.21	-1.67 ± 0.38	10^{+30}_{-8}	0.45 ± 0.09	photo z

Figure 3. The two high-quality, bright high-redshift candidates from the GLASS-JWST NIRCAM field taken in parallel to NIRISS. Photometry and best-fit SEDs at the best-fit redshift are given in the main quadrant. Redshift probability distributions P(z) from ZPHOT (gray) and EAZY (red) are shown in the inset. Upper limits are reported at the 2σ level, including a conservative estimate of the error budget, especially in the bluest bands (M22). Thumbnails, from left to right, show the objects in the F090W, F115W, F150W, F200W, F277W, F356W, and F444W bands.

https://doi.org/10.3847/2041-8213/accea5

OPEN ACCESS

Early Results from GLASS-JWST. XIX. A High Density of Bright Galaxies at $z \approx 10$ in the A2744 Region

Marco Castellano¹, Adriano Fontana¹, Tommaso Treu², Emiliano Merlin¹, Paola Santini¹, Pietro Bergamini^{3,4}, Claudio Grillo^{3,5}, Piero Rosati^{4,6}, Ana Acebron^{3,5}, Nicha Leethochawalit⁷, Diego Paris¹, Andrea Bonchi⁸, Davide Belfiori¹, Antonello Calabro¹, Matteo Correnti^{1,8}, Mario Nonino⁹, Gianluca Polenta⁸, Michele Trenti^{10,11}, Kristan Boyett^{10,11}, G. Brammer^{12,13}, Tom Broadhurst^{14,15,16}, Gabriel B. Caminha^{17,18}, Wenlei Chen¹⁹, Alexei V. Filippenko²⁰, Flaminia Fortuni¹, Karl Glazebrook²¹, Sara Mascia¹, Charlotte A. Mason^{22,23}, Nicola Menci¹, Massimo Meneghetti^{4,24}, Amata Mercurio^{25,26}, Benjamin Metha^{2,10,11}, Takahiro Morishita²⁷, Themiya Nanayakkara²¹, Laura Pentericci¹, Guido Roberts-Borsani², Namrata Roy²⁸, Eros Vanzella⁴, Benedetta Vulcani²⁹, Lilan Yang³⁰, and Xin Wang^{31,32,33},

		<u></u>	7							
ID	R.A. deg	Decl. deg	$M_{ m UV}$ mag	Z _{zphot}	Z _{EAzY-v1p3}	ZEAzY-Larson	$\frac{\rm SFR}{M_{\odot}~\rm yr^{-1}}$	$M_{ m star}$ 10^8M_{\odot}	UV Slope	μ
GHZ1	3.511929	-30.371859	$-20.36\substack{+0.31\\-0.19}$	$10.47\substack{+0.38 \\ -0.89}$	$10.39\substack{+0.19 \\ -0.20}$	$10.54\substack{+0.20\\-0.19}$	$10.7_{-4.7}^{+42.7}$	$11.5^{+7.1}_{-10.3}$	-1.93 ± 0.07	$1.71_{-0.05}^{+0.05}$
GHZ4	3.513739	-30.351561	$-19.44\substack{+0.16\\-0.26}$	$10.27^{+1.2}_{-1.4}$	$10.11\substack{+0.46\\-0.46}$	$10.43\substack{+0.61\\-0.63}$	$2.0\substack{+14.2\\-0.4}$	$4.3^{+1.5}_{-3.9}$	-2.31 ± 0.36	$1.66\substack{+0.05\\-0.05}$
GHZ7	3.451363	-30.320718	$-20.06\substack{+0.02\\-0.17}$	$10.62\substack{+0.55\\-1.02}$	$9.97\substack{+0.60 \\ -0.32}$	$10.57\substack{+0.35 \\ -0.33}$	$3.2\substack{+10.0\\-0.5}$	$2.1^{+1.8}_{-1.7}$	-2.66 ± 0.15	$1.20\substack{+0.01\\-0.01}$
GHZ8	3.451430	-30.321796	$-20.73\substack{+0.01\\-0.01}$	$10.85\substack{+0.45 \\ -0.57}$	$10.14\substack{+0.29\\-0.28}$	$10.79\substack{+0.34\\-0.34}$	$17.5^{+13.6}_{-12.3}$	$0.8\substack{+6.4\\-0.16}$	-2.60 ± 0.14	$1.20\substack{+0.02\\-0.02}$
GHZ9	3.478756	-30.345520	$-19.33\substack{+0.04\\-0.12}$	$9.35_{-0.35}^{+0.77}$	$9.48\substack{+0.40 \\ -0.37}$	$9.40\substack{+0.20\\-0.22}$	$14.4_{-7.3}^{+15.0}$	$3.3^{+2.9}_{-2.4}$	-1.92 ± 0.13	$1.33\substack{+0.02\\-0.02}$
DHZ1	3.617257	-30.425565	$-21.61\substack{+0.03\\-0.03}$	9.3127 ± 0.0002^a			$25.4_{-4.3}^{+3.2}$	$25^{+6.6}_{-5.0}$	-1.80 ± 0.08	$1.66\substack{+0.02\\-0.01}$
UHZ1	3.567065	-30.377857	$-19.79\substack{+0.16\\-0.17}$	$10.32\substack{+0.25\\-1.0}$	$9.88\substack{+0.21 \\ -0.19}$	$9.99\substack{+0.47 \\ -0.48}$	$4.5^{+2.9}_{-2.2}$	$0.4^{+1.8}_{-0.2}$	-2.72 ± 0.15	$3.72^{+0.23}_{-0.24}$

Table 3 Properties of the Galaxy Candidates at z = 9-11 in the GLASS-JWST, DDT, and UNCOVER Fields

Note. The demagnified rest frame $M_{\rm UV}$ has been obtained at the best-fit ZPHOT redshift, and the uncertainties include the contribution of both photometry and magnification. Stellar masses and SFRs have been obtained at the best-fit ZPHOT redshift as in Santini et al. (2023) and corrected for magnification. Uncertainties include error contribution from SED fitting and magnification. The UV slope β is measured by fitting the F200W, F277W, and F356W bands; the uncertainties in the fit account for photometric errors (Castellano et al. 2012). The uncertainties in the magnification μ are at the 68% confidence level; see Section 4.1.

^a Spectroscopic redshift from Boyett et al. (2023). All properties of DHZ1 have been measured fixing the redshift at the spectroscopic value.

Massive Galaxies at high redshift

Figure 1. The GSMF at redshifts $z \approx 15$ (top left), 12 (top right), 11 (bottom left), 10 (bottom right) in the TNG50-1 (solid red), TNG100-1 (dashed green), and RefL0100N1504 (dotted blue) simulation. The colored vertical solid line marks the most massive subhalo in terms of the stellar mass in the simulations. The vertical black solid lines refer to the reported galaxy candidates CEERS-1749 (top left), GL-z13 (top right), GL-z11 (bottom left), and ID 1514 (bottom right), where the black dashed lines correspond to the measurement uncertainties. The vertical dashed–dotted lines mark the lowest possible value as inferred for different star formation histories (SFHs) in Section 3.1. The histograms are normalized by their bin width of $\Delta \log_{10}(M_*/M_{\odot}) = 0.2$ and volume of the simulation box.

Euclid Space Telescope

Euclid is a pioneering space telescope mission designed to unlock the mysteries of the universe. Launch Date: 2023/7/1

Objectives:

- Map the universe's large-scale structure to understand the nature of dark matter and dark energy.
- Study the formation and evolution of galaxies to unravel their cosmic history.
- Investigate the properties of dark matter and dark energy to shed light on their fundamental nature.

Remarks

- Expanding universe Hubble Law
- ACDM CMB, Supernovae, dark matter hypothesis
- Bottom-up structure formation computer simulations
- Challenges: CMB Anomalies, Hubble Tension, Massive Galaxies at high redshift

In 1927, Belgian astronomer Georges Lemaître computed a solution to Einstein's equations and discovered that the universe is constantly expanding.

In 1929, American astronomer Edwin Hubble found that galaxies further away from the Milky Way are receding faster.

Edwin Hubble 1889 - 1953

Georges Lemaître 1894 - 1966

PHYSICAL REVIEW LETTERS 127, 161302 (2021)

Editors' Suggestion Featured in Physics

New Relativistic Theory for Modified Newtonian Dynamics

Constantinos Skordis^{*} and Tom Złośnik[†] CEICO, Institute of Physics (FZU) of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic

$$\begin{split} S &= \int d^4x \frac{\sqrt{-g}}{16\pi \tilde{G}} \left[R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi \right. \\ &\left. - (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \right] + S_m[g], \end{split}$$

CMB can also be explained by Relativistic MOND (RMOND)

