

Radiative process (Photon/neutrino) radiation transport

Kuo-Chuan Pan (NTHU)

NCTS-TCA Summer Student Program 2023

NARLabs 國家實驗研究院

國家高速網路與計算

National Center for High-performance Computing

Outline

- Introduction
- The Boltzmann equation for radiation transport
- Numerical methods for radiative transfer
- (Application: Core-Collapse Supernova)

Observation

Image credit: NASA

Simulation

Image credit: K.-C. Pan

Introduction (conti.)

- Given an astrophysical system, how does it looks like?
- Given an observed astronomical object (i.e. an image or spectrum), what is the nature of the physical system?
- Radiative process link astrophysical systems with astronomical observables
- Light curves & spectra
- Chemistry, atomic/molecular lines, neutrino interactions, ...etc.
- Radiation feedback
- Radiation fields: EM waves (photons), neutrinos, ... (Multi-messengers)

Daily life examples

Video credit: https://www.youtube.com/watch?v=CIMFsY_QKBM

Kuo-Chuan Pan

Video credit: <u>https://www.youtube.com/watch?v=9dPlkHiJ6A4</u>

Limb Darkening

Image credit: NASA

Kuo-Chuan Pan

Last scattering surface

Sun's "Surface"s

Image credit: NASA

Image credit: Luc Viatour

Kuo-Chuan Pan

Image credit: Nigel Sharp

Observation

Interstellar medium

Kuo-Chuan Pan

Object / Simulation

A hot source

Recall: Hi. Hirashita's Talk

Intensity (or brightness) I_{ν} [erg s⁻¹ cm⁻² ster⁻¹ Hz⁻¹]

 $dE_{\nu} = I_{\nu}(\boldsymbol{x}, \boldsymbol{\hat{s}}, \nu, t) \boldsymbol{\hat{n}} \cdot \boldsymbol{\hat{s}} dA d\Omega d\nu dt$

Kuo-Chuan Pan

11

- **Object / Simulation**
- Emission j_{ν} [erg s⁻¹ cm⁻³ ster⁻¹ Hz⁻¹]

- Absorption α_{ν} [cm⁻¹]
- Scattering, $j_{\nu} = \sigma_{\nu} \int_{-1}^{1} I'_{\nu}(\epsilon', \mu') d\mu'$
 - σ_{ν} is the absorption coefficient of the scattering process

The Transport Equations

Suggested textbooks

- "Radiative Processes in Astrophysics", Rybicki & Lightman
- "The Physics of Astrophysics", Frank Shu

Kuo-Chuan Pan

cs", Rybicki & Lightman

Review: Basic Radiative Transfer Equation

- Optically thick: $\tau_{\nu} > 1$
- Optically thin: $\tau_{\nu} < 1$

Kuo-Chuan Pan

assume no scattering process

Recall H. Hirashita's talk

Optical depth, $d\tau_{\nu} = \alpha_{\nu} ds$ Source function, $S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}$ Opacity, $\kappa_{\nu} = \frac{\alpha_{\nu}}{\rho} [\text{cm}^2 \text{ g}^{-1}]$

Special cases: emission or absorption only

Scattering

Scattering $\sigma_{\nu} \int_{-1}^{1} I'_{\nu}(\epsilon', \mu') d\mu'$

• Coherent, isotropic scattering

$$\frac{dI_{\nu}}{ds} = -\left(\alpha_{\nu} + \sigma_{\nu}\right)\left(I_{\nu} - S_{\nu}\right)$$

$$S_{\nu} = \frac{\alpha_{\nu} j_{\nu} + \sigma_{\nu} J_{\nu}}{\alpha_{\nu} + \sigma_{\nu}}$$

Average of two source functions, weighted by their respective absorption coefficients

Kuo-Chuan Pan

\checkmark Scattering coefficient, σ_{ν} \checkmark Mean intensity, J_{ν}

Derived from Boltzmann equation

- in this cavity is
 - $N = \int f$

where f is the distribution function. (x,p) is the phase spaces of momentum and position coordinates.

Kuo-Chuan Pan

• Consider a cavity containing a gas of particles. The mean number of particles

$$f(x, p, t)d^3xd^3p,$$

16

The Boltzmann equation dp dx

- Particles are subject to an external force field "F"
- The Boltzmann equation

$$f(\boldsymbol{x} + \boldsymbol{u}dt, m\boldsymbol{u} + \boldsymbol{F}dt, t + \boldsymbol{u}dt)$$

Kuo-Chuan Pan

 $dt) - f(\boldsymbol{x}, \boldsymbol{p}, t) = [\Delta f]_{\text{coll.}}$

Χ

The Boltzmann equation

 $f(\boldsymbol{x} + \boldsymbol{u}dt, m\boldsymbol{u} + \boldsymbol{F}dt, t + dt) - f(\boldsymbol{x}, \boldsymbol{p}, t) = [\Delta f]_{\text{coll.}}$ Recall H.-Y. Pu's talk

$$\frac{df}{dt} = \left[\frac{\partial f}{\partial t}\right]_{\text{coll.}} \quad \text{or} \quad \left[\frac{\partial f}{\partial t} + u_i \frac{\partial f}{\partial x_i} + F_i \frac{\partial f}{\partial u_i} = \left[\frac{\partial f}{\partial t}\right]_{\text{coll.}}\right]_{\text{coll.}}$$

The evolution of the distribution function in the six dimensional space

 $n(x,t) = \int f(x,p,t)dp$ $\rho(x,t) = \int mf(x,p,t)dp$ Number density Mass density $v(x,t) = \int muf(x,p,t)dp$ Bulk velocity

The Boltzmann equation

- collisions involving more than two particles to be neglected
- and is given by the Maxwellian velocity distribution

$$f(x, \boldsymbol{u}, t)d\boldsymbol{u} = n(x, t) \left[\frac{m}{2\pi kT(x, t)}\right]^{\frac{3}{2}} \exp\left[-\frac{m(u - v)^2}{2kT(x, t)}\right]$$

* Using the same concept, we could derive the hydrodynamics equations as well

Kuo-Chuan Pan

When collisions are "elastic" and the density of the medium is low enough for

• Then, in absence of external force, f is obtained from statistical mechanism

The Boltzmann equation for photons

 $f(\boldsymbol{x} + \boldsymbol{u}dt, m\boldsymbol{u} + \boldsymbol{F}dt, t + dt) - f(\boldsymbol{x}, \boldsymbol{p}, t) = [\Delta f]_{\text{coll.}}$ Recall H.-Y. Pu's talk

$$\frac{df}{dt} = \left[\frac{\partial f}{\partial t}\right]_{\text{coll.}} \quad \text{or} \quad \frac{\partial f}{\partial t} + u_i \frac{\partial f}{\partial t}$$

• Photon transport: $f = f_{\gamma}$

$$\begin{pmatrix} dE_{\nu} = h\nu f_{\gamma}(\boldsymbol{x}, \boldsymbol{p}, t)d\boldsymbol{x}d\boldsymbol{p} \\ dE_{\nu} = I_{\nu}(\boldsymbol{x}, \boldsymbol{\hat{s}}, \nu, t)\boldsymbol{\hat{n}} \cdot \boldsymbol{\hat{s}}dAd\Omega d\nu dt \\ I_{\nu} = (h\nu/c)(h^{2}\nu)f_{\gamma} = \frac{h^{4}\nu^{3}}{c^{2}}f_{\gamma} = C_{1}f_{\gamma} \end{cases}$$

Photon Transport Equation

$$\frac{\partial f}{\partial t} + u_i \frac{\partial f}{\partial x_i} + F_i \frac{\partial f}{\partial u_i} = \left[\frac{\partial f}{\partial t}\right]_{\text{coll.}}$$

• Photon transport: $f = f_{\gamma}$

$$\frac{1}{C_1} \left[\frac{\partial I_{\nu}}{\partial t} + c(\hat{\boldsymbol{s}} \cdot \nabla) I_{\nu} \right] = \frac{1}{C_1} \left[\frac{\partial f}{\partial t} \right]_{\text{coll.}}$$

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{s}\cdot\nabla I_{\nu} = -\epsilon_{\nu}I_{\nu} + j_{\nu} + j_{\nu} + i_{\nu} + i_{\nu}$$

Kuo-Chuan Pan

F = 0 for Newtonian photons

- [Other scattering terms]

Extinction, $\epsilon_{\nu} = \sigma_{\nu} + \alpha_{\nu}$

the radiation field.

0 th moment: mean Intensity

$$J_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} d\Omega,$$

1st moment: radiation flux

$$H^i_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} s_i d\Omega,$$

2nd moment: tensor

$$K_{\nu}^{ij} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} s_i s_j d\Omega,$$

Kuo-Chuan Pan

The moments of the Boltzmann equation define the dynamical equations for

$$\frac{1}{c}\frac{\partial J_{\nu}}{\partial t} + \nabla \cdot \boldsymbol{H}_{\nu} + \alpha_{\nu}\rho(J_{\nu} - B_{\nu}) = 0$$

Radiation energy equation

$$\frac{1}{c}\frac{\partial H_{\nu}^{i}}{\partial t} + \sum_{j}\frac{K_{\nu}^{ij}}{\partial x_{j}} + \epsilon_{\nu}\rho H_{\nu}^{i} = 0$$

Radiation momentum equation

Additional closure relations are necessary for "K^{ij}"

Example: Optically thick limit

star —> local thermodynamics equilibrium (LTE)

Equilibrium (thermal timescale is long)

Kuo-Chuan Pan

• e.g. the interior of a star, mean free path is much less than the radius of the

$$I_{\nu} \sim B_{\nu}(T)$$
 and $S_{\nu} = B_{\nu}(T)$

almost isotropic
$$K_{\nu} \sim \frac{1}{3} J_{\nu}$$

$$H_{\nu} = -\frac{1}{\rho \alpha_{\nu}} \nabla \cdot K_{\nu} = -\frac{1}{3\rho \alpha_{\nu}} \frac{\partial B_{\nu}}{\partial T} \nabla T$$

 $F_{\nu} = 4\pi H_{\nu}$ and $F = \int_{0}^{\infty} F_{\nu} d\nu$ $\frac{4\pi}{30\alpha_{\mu}}\nabla T \int_{0}^{\infty} \frac{\partial B_{\nu}}{\partial T}$ 4π $\nabla(aT^4)$ $-d\nu =$ $3\rho\alpha_{\nu}$ $3\rho\alpha_{\nu}$

Diffusion approximation

Numerical methods for solving transport equations

Codes and Methods

- "Numerical methods in Astrophysics", Bodenheimer et al.
- Astrophysics Source Code Library (<u>http://ascl.net/</u>)
- Odssey.edu (https://odysseyedu.wordpress.com/) by H.-Y. Pu
- More ...

Bodenheimer et al.

The Astrophysics Source Code Library (ASCL) system astronomers, and lists codes that hav is indexed by the SAO/NASA Astrophysics Dat ascl ID can be used to link to the code entry by

http://ascl.net

Welcome to the ASCL

Pu and Yun (2016)

Numerical Challenging

- Can be time-dependent or time independent
- Can be coupled with gas (hydro/mhd) or via post-processing
- (magneto-) hydrodynamics: 4D (t, x, y, z)
- Radiation transport: 7D (t, x, y, z, theta, phi, e/f) —> slow to compute
- If 100 gird points in each dimension $->10^{12}$ points per time step (~ 8TB)
- Could have a wide opacity range (from optically thin to thick)
- Additional complexity from multi-dimensional fluids
- Approximations are usually necessary

Numerical approaches - Outline

- Efficient / Ad-hoc / Poor: polytropic EoS
- Tabulated heating /cooling
- Photon/Neutrino leakage
- Flux-limited diffusion
- Ray-tracing
- Moment schemes
- Boltzmann transport

Kuo-Chuan Pan

Non- Transport

Rad. Transport

* Each method could have several variants

- If radiative cooling is so efficient that the isothermal assumption is applicable
- Simply use the isothermal EoS (gamma=1) or polytropic EoS (gamma >~ 1)

Kuo-Chuan Pan

Zhang et al. (2020)

Add the cooling curve (from a table or a formula) in the energy equation.

Kuo-Chuan Pan

Schure et al. (2009)

Non-transport: Leakage scheme

- The leakage scheme provides approximate energy and number emission/ absorption rates based on local thermodynamics and the optical depth.
- The rate of energy emission cab be determined by the interpolation between two limiting regimes
- The optical depth requires a non-local calculation

Couch & O'Connor (2013)

Rad.-transport: FLD

Radiation-hydrodynamics equations:

$$\frac{d\rho}{dt} + \rho \frac{\partial v_j}{\partial x_j} = 0$$

$$\rho \frac{dv_i}{dt} = -\frac{\partial P_g}{\partial x_i} + \frac{1}{c} \epsilon_F \rho F_{\text{rad},i}$$

$$\rho \frac{de}{dt} + (e + P_g) \frac{\partial v_j}{\partial x_j} = -4\pi \kappa_P \rho B + c\kappa_E \rho u$$

* ignore gravity, magnetic fields, and viscosity

Kuo-Chuan Pan

 $F_{\rm rad}$ (or F), radiation flux integrated over frequency B, the Planck function integrated over frequency u, energy density in the radiation field

$$\kappa_E = \frac{1}{u} \int_0^\infty \kappa_\nu u_\nu d\nu,$$

$$\kappa_P = \frac{1}{B} \int_0^\infty \kappa_\nu B_\nu(T) d\nu,$$

$$\kappa_F = \frac{1}{F} \int_0^\infty \epsilon_\nu F_\nu d\nu,$$

Rad.-transport: FLD (conti.)

- Diffusion Approximation (optically thick limits)
- Frequency integrated (gray) or with different frequency bins (multi-groups)

$$F=-\frac{c}{3\kappa_R\rho}\boldsymbol{\nabla} u, \qquad \text{or}$$

- In the optical thin limit, flux becomes unphysical large
- We need to adjust lambda in optically thin limit (need a flux limiter)

$$F = -\frac{c\lambda}{\kappa_R\rho} \nabla u,$$

Rad.-transport: FLD (conti.)

- Flux-limited diffusion
- Define a dimensionless quantity R

$$R = \frac{|\nabla u|}{\kappa_R \rho u},$$

Is the ratio of mean free path to the energy scale height

$$\lambda = \frac{2+R}{6+3R+R^2}$$

Levermore & Pomraniy (1981)

$$R - > 0$$
 optically thick $\lambda = \frac{1}{3}$
 $R - > \infty$ optically thin $\lambda = \frac{1}{R}$

Rad.-transport: Moments methods

$$\begin{pmatrix} \frac{1}{c}\frac{\partial J_{\nu}}{\partial t} + \nabla \cdot \boldsymbol{H}_{\nu} + \alpha_{\nu}\rho(J_{\nu} - B_{\nu}) = 0\\ \frac{1}{c}\frac{\partial H_{\nu}^{i}}{\partial t} + \sum_{j}\frac{K_{\nu}^{ij}}{\partial x_{j}} + \epsilon_{\nu}\rho H_{\nu}^{i} = 0 \end{cases}$$

- The moment equations describes the radiation fields, which are related to the energy, energy flux, and radiation pressure
- Consider up to the 1st moment (or M0) \rightarrow FLD
- Consider up to the 2nd moment with assumptions of closure (M1, variable Eddington tensor)
- Multi-energy M1 scheme could be very expensive !!! Kuo-Chuan Pan

Rad.-transport: Moments methods

- Three neutrino species
- M1 scheme with 12 energy bins
- 3 (species) x 4 (1 energy + 3D flux) x (12 energy bins) = 144 radiation variables
- Takes > 10M core-hours

Rad.-transport: Ray-tracing methods

- Usually via post-processing
- Write the transfer equation in Lagrangian coordinates

$$\frac{dI_{\nu}}{ds} = j_{\nu} - \alpha_{\nu}I_{\nu}$$

- equation along the path of the light ray.
- tracing method)
- Use Monte-Carlo approach (short or long characteristic)

Kuo-Chuan Pan

• Shoot a discrete set of light rays from a point source, solving the transfer

• The difficulty is then to choose the appropriate number of rays (adaptive ray-

Rad.-transport: Ray-tracing methods

Microphysics

- How about opacity, emissivity, and mean free path?
- These depend on complex microphysics which itself depends on the transport of the radiation field
- Usually stored in a table (atomic data, chemical network, eos) ~GB
- Could assume LTE (Saha eq.) or non-LTE (solve reaction network)

Illustration of a comprehensive "model atom" for neutral oxygen, that describes the structure and radiative and collisional transitions, and is used when calculating the departures from Sana-Boltzmann equilibrium in stallar atmospheres (Amarsi et al., 2018, A&A, 616, 89).

Benchmarks

• Free streaming shadow test

THE ASTROPHYSICAL JOURNAL, 854:63 (19pp), 2018 February 10

Figure 13. Neutrino energy density multiplied by r^2 in our M1 shadow test in 2D cylindrical coordinates. There is a spherical emission source located at the origin and a perfectly absorbing region (marked by the dashed circle) at r = 8 with a radius of 2. This test closely follows the setup of Just et al. (2015).

Kuo-Chuan Pan

Bloch et al. (2020)

Shadow simulation, showing snapshots of the radiative temperature at time t f = 10 - 10 s with different closure relations: P 1 model (upper panel), M 1 model with fixed eigenvalues (middle panel), and M 1 model with computed eigenvalues (lower panel).

GRMHD + post-precessing ray tracing Supermassive BH in M87

Shiokawa et al. (2017)

Kuo-Chuan Pan

Recall H.-Y. K. Yang's talk

Alberdi et al. (2019)

Numerical approaches - Outline

Non- Transport

- Polytropic EoS
- Tabulated heating /cooling
- Photon/Neutrino leakage

Hard

Radiation Transport

Ray-Tracing

Multi-groups-FLD

IDSA

M1

Boltzmann solver

The ideal algorithm combines the three green regions. However, it might be too complicated.

	Semi- transparent	Transparent Regime
X		Inefficient ang. res.
	Flux factor estimated	Flux factor unknown
ıth	Limited by reaction rates	

- Alternatives: variable Eddington factor method; M1, and the IDSA
 - [Adjusted from M. Liebendörfer]

Summary

Black hole shadow

Star formation atomic data

neutrino radiation Variable Eddington Tensor

Supernovae

Kuo-Chuan Pan

ray-tracing Spontaneous Emission

- flux-limited diffusion
- LTE Scattering process Monte Carlo **Boltzmann** equation
- Radiation transport
 - IDSA Closure Hyperfine Splitting Stimulated emission

 - Absorption coefficient Zeeman splitting
 - Multi-group flux limited diffusion moment methods neutrino interactions

Application: Supernova with Neutrino Transport

Application: Core-Collapse supernovae

- Neutrino Transport (not photons)
- Not only supernovae, but also neutron star mergers, ... etc.
- Neutrinos are fermions (photons are bosons)
- Neutrinos have difference flavors (and anti-neutrinos)
- Relativistic effects can not be ignored
- Complicated neutrino interactions (oscillations?)
- Cover both optically thick and thin

Kuo-Chuan Pan

Recall H-Y Karen Yang's talk

Stellar evolution 100

Low-mass stars

Red giant

Red dwarf

Blue dwarf

Planetary nebula

Thermonuclear supernova

White dwarf

Black dwarf

Kuo-Chuan Pan

Massive stars

Protostar

Red supergiant

Star-forming nebula

Core-Collapse supernova

Neutron star

Black hole

н

He

Ne

0

Si

M > ~ 8 solar mass stars

47

Iron core

Iron core

2000 km

Iron core

The Sup	ernova	Problem
	S 0.0	
	<u>כ</u> -0.2	
	H -0.4	
	B -0.6	
	B -0.8	
	-1.0	0 50 100 15
Kuo-Chuan Pan		Radius

Shock stalled at ~ 150 km !!! 100 150 200 250 300 Radius [km]

Why does the shock stall?

- Shock loses energy to:
- Dissociation of infalling heavy nuclei:
 - ~8.8 MeV/baryon
- Neutrinos that stream away from behind the shock.

Inner core -> Core of the protoneutron star (PNS)

Kuo-Chuan Pan

R_{Fe}

R_v

R_s ~ 100 km

Neutrino Matter Interactions

Electron/ positron capture

 $\begin{array}{ccc} \nu_e + n &\rightleftharpoons & e^- + p \\ \bar{\nu}_e + p &\rightleftharpoons & e^+ + n \end{array}$ $\nu_e + (A, Z) \rightleftharpoons e^- + (A, Z + 1)$

NN bremsstrahlung (Thompson+02)

ve pair \rightarrow vu pair (Buras+03)

Neutrino-electron scattering $\nu + e \rightleftharpoons \nu + e$

Inelastic neutrino-nucleus scattering

[Adjusted from M. Liebendörfer]

Kuo-Chuan Pan

Elastic coherent scattering of neutrinos on nuclei

$$\nu + (A, Z) \rightleftharpoons \nu + (A, Z)$$

Neutrino-nucleon scattering

 $\nu + N \rightleftharpoons \nu + N$

Neutrino Luminoisty

Optical depth

$$\tau_{\nu}(r) = \int_{\infty}^{r} \frac{1}{\lambda_{\nu}} dr'$$

• Neutrinosphere:

$$R_{\nu} = R\left(\tau_{\nu} = \frac{2}{3}\right)$$

Depends on $(\epsilon_v)^2$

 Postbounce neutrino burst: Release of neutrinos created by e⁻ capture on free protons^{0.5} in shocked region when shock 'breaks out' of the v_e neutrinospheres.

2.5 2 erg/s)1.5 (10^{53}) Trapping -0.1 0

Supernova mechanism

- Collapse to neutron star ~ 300 B
- 1B kinetic and internal energy of the ejecta (or ~10B for hypernova)
- 99% of the energy is radiated as neutrinos over hundreds of seconds as the protoneutron star cools
- Explosion mechanism must tap the gravitational energy reservoir and convert the necessary fraction into energy of the explosion.

國立庸華大學

NATIONAL TSING HUA UNIVERSITY

Core-Collapse Supernova Simulation

Visualization: Kuo-Chuan Pan (潘國全) Department of Physics Institue of Astronomy National Tsing Hua University, Taiwan

WARLabs 財團法人國家實驗研究院

高速網路與計算中心 National Center for High-performance Computing

Compositions

х

Z

Gravitational wave from CCSNe

Summary

Black hole shadow

Star formation atomic data

neutrino radiation Variable Eddington Tensor

Supernovae

Kuo-Chuan Pan

ray-tracing Spontaneous Emission

- flux-limited diffusion
- LTE Scattering process Monte Carlo **Boltzmann** equation
- Radiation transport
 - IDSA Closure Hyperfine Splitting Stimulated emission

 - Absorption coefficient Zeeman splitting
 - Multi-group flux limited diffusion moment methods neutrino interactions

