NCTS SSP Lectures 2024

S. Key Ste

Astrophysical Cosmology

Andrew Cooper, NTHU apcooper@gapp.nthu.edu.tw

NTU, July 1st 2024

DESI Collaboration/NOIRLab/NSF/AURA/R. Proctor

There are many kinds of cosmologist...

Cosmology Basics Structure Formation Recent Developments

Astrophysics and Cosmology

from?

"Astrophysical Cosmology" deals with:

- The story of the origin, evolution and ultimate fate of the Universe;
- The application of fundamental physics to the Universe as a whole;
- The initial and boundary conditions for galaxy formation.

How big is the Universe, how old is it, how has it changed? Where do galaxies come

100 years of "modern" cosmology

Models of the Universe

- lacksquarewe can test with astronomical observations.
- The ingredients in these models represent the different types of "stuff" in the Universe: \bullet baryonic (ordinary) matter, radiation, neutrinos, cold dark matter, and dark energy.
- The last two are 'known' only indirectly, through their **effect** on other things; their true \bullet nature is still unknown.

'Basic' physics can be used to build cosmological models that make predictions

Models of the Universe

- with volume (their equations of state).
- \bullet expands and the rate at which structure in the Universe grows.
- work out the actual mix of ingredients.

https://depositphotos.com/

The components are distinguished by how their energy density (pressure) changes

The fundamental predictions of the models are the rate at which the Universe

By observing how the real universe behaves and comparing to predictions, we can

istock.com

Basic idea: FLRW models and \LambdaCDM

- Friedman Lemaître Robertson Walker
- General relativity: spacetime is **dynamic**; it responds to the density of mass-energy.
- On large scales, the distribution of mass-energy in the universe is (assumed) homogeneous.
- density (the Friedman equation \downarrow).

$$\Omega_m + \Omega_{\gamma} + \Omega_{\Lambda} + \Omega_k = 1 \qquad \Omega_x = \frac{\rho_x}{\rho_c}$$
$$\rho_{c,\text{now}} \sim 1 \times 10^{11} \,\text{M}_{\odot} \,\text{Mpc}^{-3}$$

The current "baseline" model is called Λ CDM

Expansion factor: x(t) = a(t)r

Hubble parameter:

H(t) =

The background metric evolves: the distance between all points in spacetime grows or shrinks 1.

The rate of growing or shrinking is a function of the density of all the 'ingredients' of the background mass-energy

An expanding universe: H_0

The universe is expanding. The present-day rate of expansion is the Hubble Constant

In the nearby universe, the Hubble flow is determined using standard candles: certain types of variable star and supernovae for which distance can be inferred from a known luminosity.

 $H_0 \simeq 65 - 70 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ (see later...). $v = H_0 d$, gives the recession speed of galaxies in the local universe.

Cosmological redshift

- Photon wavelengths are "stretched" by the expansion; the spectra of distant galaxies are red-shifted.
- The cosmological **redshift** is a measure of the **relative expansion** between the present day and the time the light was emitted: $a = (1 + z)^{-1}$.

tutorial/astronomy/regression.html

Relativistic effects

- Photons emitted in our direction travel towards us at ${\bullet}$ the speed of light.
- The photons reaching us now have travelled different distances, depending on when they set off.
- In our local flat, static spacetime, we're used to the lacksquareidea that lightbulbs look smaller and fainter when they're further away.
- In cosmological spacetime, the **actual distance** lacksquarephotons have to travel to reach us "now" is determined by the expanding background.
- This makes the relationship between apparent size, ulletbrightness and distance "complicated" (non-Euclidean).
- At cosmological distances, we need to know the expansion history to convert observed angles and brightnesses to physical sizes and luminosities.

Angular sizes

- The apparent size of galaxies that "cross our lightcone" \bullet in the very early universe ($z \gtrsim 2$) increases with redshift because those galaxies were relatively *closer* to us when the photons set off; they were "delayed" by the rapid early expansion.
- The relationship between apparent angular size and redshift depends on the expansion history.
- As well as standard candles, we can measure the expansion history of the universe using features of known physical size as standard rulers.

The cosmic microwave background

Photons propagated from the "surface of last scattering".

to density fluctuations in the photon-baryon fluid. 300

The acoustic peaks

The plasma era, dark matter and flatness

Accelerated expansion and Λ

Weinberg et al. (2013) а 0.8 0.6 G 0.4 0.2

The CMB data imply a "flat" universe with low matter density, $\Omega_m \sim 0.3$. The dominant contribution to the *present day* energy density must be something that doesn't cluster under gravity. The "simplest" explanation is a cosmological constant, Λ : **constant** energy density per unit volume, such that $\Omega_m \sim 0.7.$ The decisive evidence for this is provided by the accelerating expansion inferred from supernova luminosity **m distances, measured at z < 1.

Dark energy

To explain accelerated expansion (in GR), we postulate a mysterious source of energy density with negative pressure! A cosmological constant is just one of many possibilities.

$$w \equiv \frac{p_{DE}}{\rho_{DE}} \qquad w = -1 \text{ for } \Lambda$$

$$w \sim -1.02 \text{ according to Plan}$$

No reason *w* has to be a constant. The CMB has little to say about this: need measurements over a large range of redshift.

$$w(a) = w_0 + w_a(1-a)$$
 See Linder et al. (2

Evolving w changes H(z) and the rate at which structure grows \implies by measuring these things, we can constrain w_0 and w_a .

This is the goal of many big cosmological "experiments" happening now and in the near future.

nck 2018

2002): https://arxiv.org/pdf/astro-ph/0208512

Cosmological basics: summary

- \bullet almost everything we see in the Universe.
- \bullet energy).
- \bullet few parameters and is extremely well constrained by observations.
- Of course, we still want to understand what it all means. \bullet

Undergraduate-level physics works pretty well to make an empirical model of

Where observational facts can't be explained from first principles, a handful of <u>surprisingly</u> simple empirical "tweaks" are introduced (initial conditions? \rightarrow inflation; missing mass? \rightarrow dark matter; accelerated expansion? \rightarrow Λ / dark

Given the huge range of predictions they can make, this empirical model has very

Cosmology Basics Structure Formation Recent Developments

What is "cosmic structure"?

DESI Collaboration/NOIRLab/NSF/AURA/R. Proctor

What is "cosmic structure"?

C. Lamman / DESI collab.

Initial conditions for structure formation?

- like galaxies or the CMB anisotropies.
- "small" scales, even at very early times.
- \bullet hotter or colder spots correspond to regions of higher or lower density.
- lacksquareand their large-scale structure

Almost all cosmological observations are based on the properties of structures

FLRW models assume a homogeneous background. This obviously isn't true on

We can blame the CMB temperature anisotropies on matter density perturbations:

After decoupling, fluctuations can grow under gravity (the growth of fluctuations in the DM starts well before decoupling). This "explains" where galaxies come from,

Inflation!

- How come we have density fluctuations in the first place?
- To explain the CMB anisotropies, we need the fluctuations to be "built in" to the initial conditions somewhere around $z \to \infty$.
- That's hard: everything should get smoother at earlier times!
- This **serious** problem is solved by postulating **inflation**: a **brief** period of very, very, very, very, very rapid expansion at (extremely) early time.
- This is accepted because very simple models of inflation also "fix" other kinds of 'initial condition' problems with FLRW models.

Inflation takes \bullet quantummechanical fluctuations in the very early Universe and "blows them up" to cosmic scales during a phase of accelerated expansion, in pretty much exactly the same way as Dark Energy seems to be doing now.

- Except, a <u>lot</u> stronger, and somehow inflation stopped...
- Instead of "dark energy" we have the inflaton.

The growth of structure after recombination

- \bullet
- After that (i.e. for the next ~ 13.5 billion
- \bullet gravity. The baryons follow along (after recombination).
- \bullet (more accurately) with explicit simulations.

Accepting inflation, and with cosmological parameters from the CMB, we can say with some confidence what gravitating matter was doing ~300,000 years after the Big Bang.

years) it's all about
$$F = -\frac{GMm}{r^2}$$
.

Overdensities grow. Regions of higher-than-average (dark matter) density collapse under

Starting from CMB initial conditions, we can follow the collapse with perturbation theory or

The cosmic web

V. Springel

The matter power spectrum

Planck Collab. (2018)

The matter power spectrum

Dark matter halos

- Overdense regions "turn around" from the cosmic expansion and collapse lacksquareunder gravity.
- Gravitational contraction of (collisionless) DM stops when equilibrium is • reached between the kinetic and potential energy of the bound material The overdensity is said to be **virialized** (virial theorem: 2T = -W).
- This happens at $\rho \approx 200 \,\bar{\rho}$. Virialized clumps are called dark matter halos. lacksquare
- At any given time there is a characteristic mass scale with this density. Loosely speaking:
 - Fluctuations on larger scales (more mass) almost always collapse late; • these are galaxy clusters!
 - Smaller scales (less mass) may collapse early (if they are in a dense • environment on a larger scale, e.g. the cores of galaxy clusters) or late (if they are isolated, e.g. dwarf galaxies).

The dark matter halo mass function

Given initial conditions, the number of virialized objects of a given mass at any given time can be predicted by an analytic theory (direct simulations are even better).

> Number of halos per unit volume per decade in mass

Galaxies and their halos

In a CDM-like cosmogony, virial mass is the fundamental parameter of galaxy formation.

Baryons (hydrogen atoms) settle into hydrostatic equilibrium in virialized halos. The corresponding virial temperature determines what happens next.

ambient temperature of intergalactic medium).

To form galaxies, some of those baryons have to **cool down**. Main cooling process is the emission of photons due to collisional excitation of the bound electrons.

This process can only cool the gas efficiently above $T_{\rm vir} \sim 10^4 \, {
m K}$.

Total mass of baryons in a halo is $\sim \Omega_b / \Omega_{DM}$ (if halo potential is deep enough to trap gas at

Which galaxies live in which halos?

Which galaxies live in which halos? ...has the same -3) number per vol.... (a) L/(h³Mpc "Abundancematching"--2as dlog this halo Φ $\log[\Phi(L)$ mass **Dis** -68 14 10 12 $\log[L/(h^{-2}M_{\odot})]$ Mass of galaxies or halo.

N-Body simulations

https://abacussummit.readthedocs.io/

The cosmological simulator's toolkit

These are just examples, many other alternatives available!

Basic cosmological calculatuions	astropy.cosmology	https://docs.astropy.org/en/stable/cosmology/index.html
Making density power spectra ("Boltzmann codes")	САМВ	https://camb.readthedocs.io/en/latest/
	CLASS	https://lesgourg.github.io/class_public/class.html
Turning power spectra into N-body initial conditions	MUSIC	https://www-n.oca.eu/ohahn/MUSIC/
Running cosmological N-Body models and building lightcones	GADGET 4	https://wwwmpa.mpa-garching.mpg.de/gadget4/
Finding dark matter halos in N-body simulations and making merger trees	SUBFIND / SUBFIND-HBT	(built in to Gadget-4)
	ROCKSTAR	https://github.com/yt-project/rockstar
	AHF	http://popia.ft.uam.es/AHF/
Analysing N-Body simulations	PyNBody	https://pynbody.github.io/pynbody/ [although often DIY]
	NBodyKit	https://nbodykit.readthedocs.io/en/latest/index.html
Halo growth / Press-Schechter	Parkinson, Cole & Helly (2008)	https://astro.dur.ac.uk/~cole/merger_trees/
Empirical galaxy-halo models	UniverseMachine	https://bitbucket.org/pbehroozi/universemachine/src/main/
Halos / HOD	HaloTools	https://halotools.readthedocs.io/

Structure formation: summary

- "Astrophysical" cosmology: quantifying the evolution of cosmic structure. \bullet
- \bullet
- \bullet
- The most important factors in understanding galaxy evolution are: \bullet
 - The evolution of the dark matter halo mass function;
 - The tight (but not linear) relationship between galaxy mass and halo mass.

Primordial perturbations \rightarrow plasma era \rightarrow cosmic web \rightarrow galaxy formation.

Measurements of the cosmological parameters are approaching $\sim 1~\%$ from CMB and redshift surveys; galaxy formation (assuming $\sim \Lambda CDM$) is just about a solved **problem**, to the extent required for the use of galaxies as cosmological tracers.

Cosmology Basics Structure Formation Recent Developments (In "late-universe", astrophysical cosmology)

The Dark Energy Spectroscopic Instrument

★ 4m telescope
★ 5000 fibers
★ Optical/NIR
★ 100,000 spectra/night

 \mathbf{X}

International consortium, led by LBNL In Taiwan: NTU, NTHU

www.desi.lbl.gov

Precise measurements of the **baryon acoustic oscillation scale** at different redshifts.

The Baryon Acoustic Oscillations

The scale of the sound horizon at the time of decoupling is imprinted on the correlation function of matter (halos and galaxies) as well as radiation (CMB).

In principle, we can measure the matter correlation function at any redshift.

At all redshifts, we expect to find an excess number of galaxy pairs with separations on the scale of the acoustic peak.

This BAO scale is a standard ruler. We can use it measure the angular diameter distance to any given redshift, and also infer H(z).

The BAO is a weak, statistical signal — the more volume and more redshifts, the better!

DESI large-scale structure tracers QSOs X Lyα forest lines (gas clouds) **Emission-line** galaxies X Luminous red galaxies X Nearby galaxies

DESI Collaboration/NOIRLab/NSF/AURA/R. Proctor

Baryon Acoustic Oscillations in DESI (first data, April 2024)

https://data.desi.lbl.gov/doc/papers/

DESI Collaboration et al. (2024) astro-ph/2404.03002

DESI 2024 VI: Cosmological Constraints from the measurements of Baryon Acoustic Oscillations

corresponding result from the CMB (including CMB lensing) is shown in pink.

Figure 2. Left panel: 68% and 95% credible-interval contours for parameters $\Omega_{\rm m}$ and $r_{\rm d}h$ obtained for a flat ΛCDM model from fits to BAO measurements from each DESI tracer type individually, as labeled. Results from all tracers are consistent with each other and the change in the degeneracy directions arises from the different effective redshifts of the samples. *Right panel:* the corresponding results in flat ACDM for fits to BAO results from all DESI redshift bins (blue), the final SDSS results from [139] (orange), and the combination of these two as described in the text (green). The

Evolving Dark Energy

Tentatively, DESI-Y1 adds to weak evidence from other probes favouring DE that had a somewhat more negative EoS in the past.

Science and technology | Dark secrets

The dominant model of the universe is creaking

Dark energy could break it apart

Log in

Science and technology | Dark secrets

The dominant model of the universe is creaking

Dark energy could break it apart

Log in

The

H₀ Tension?

 \bullet supernovae) favour 70 – 75 km s⁻¹; a ~ 5 σ discrepancy.

Early-universe (CMB, **DESI**) measurements of H_0 favour $67 - 69 \,\mathrm{km \, s^{-1}}$ but late-universe measurements (e.g.

H₀ Tension?

- No obvious sign (yet) that this is due to \bullet underestimated errors/systematics. Plenty of debates and theories!
- Previous problems of this kind have been "fixed" by \bullet postulating inflation and dark energy.
- An early-time fix involves reducing the sound \bullet horizon before recombination with "early" dark energy, or tweaks to pre-CMB photon/baryon physics.
- Late-time fixes are more controversial (for a review lacksquaresee e.g. Di Valentino et al. 2021 — there are 100s of papers on this subject every year!)
- (Note also not-directly-related-but-somewhat- \bullet similar " S_8 tension" in CMB-predicted vs. observed growth of structure.)

Kamionkowski & Riess (2023) Ann. Rev. Nucl. Part. Sci, 73:153-180

courtesy T. Karwal.

Small-scale constraints on Λ CDM

- 10-20 years ago, there was a lot of discussion about \bullet "small-scale problems" with ΛCDM .
- There never really was a "missing satellites problem". \bullet
- However, we still don't know where exactly the cutoff in \bullet the matter power spectrum is, or how galaxy formation works at the lowest masses and earliest times.
- Small-scale galaxy formation and dynamics could still be \bullet our best hope to learn more about the nature of the dark matter (with astronomy):
 - Lensing
 - Stellar stream perturbations
 - Globular cluster formation
- Unfortunately we still don't understand the nuts and bolts of galaxy formation well enough to turn small scale observations into rigorous tests of cosmology.

Benitez-Llambay & Frenk (2020)

Schematic picture of the impact of

10.0

cosmic reionization on galaxy formation

Figure 10. Stellar mass vs. redshift from galaxy SED fitting with **bagpipes**. The dashed lines indicate the maximum stellar mass we would expect to find in a given volume based on the halo mass function (assuming a global star-formation efficiency $\epsilon = 1$, or $\epsilon = 0.2$ for a more realistic assumption). We plot the stellar masses inferred for "little red dots" in JADES from Williams et al. (2023), as well as the three ultra-massive objects identified in Xiao et al. (2023).

- redshift.

Akins et al. (2024)

• JWST is opening up tests of galaxy formation at much higher

• In principle these could challenge models of structure formation — again, provided we can get past much greater uncertainty in models of galaxy evolution.

Euclid

- 15k sq. deg. imaging to $\sim 28 29 \,\mathrm{mag}\,\mathrm{arcsec}^{-2}$ (NIR/VIS) + $R \sim 400$ NIR spectroscopy (for H α redshifts).
- Galaxy clustering and weak lensing.

exclusive-ero-data/

https://www.euclid-ec.org/science/overview/

Euclid

- \rightarrow distortions of galaxies at z' > z.
- Needs very accurate accounting of systematics from imaging, 'intrinsic alignments' etc.

https://www.euclid-ec.org/mapping-the-dark-universe-with-gravitational-weak-lensing/

• Weak mensing: measure H(z) from galaxy shapes + redshifts. Galaxies at $z \rightarrow$ mass \rightarrow potential

Euclid

Spectacular HST-like wide-field images of nearby galaxies.

Other hot topics in cosmology

- Big-Bang nucleosynthesis and cosmic abundances! \bullet
- Cluster cosmology! (**DESI**, Euclid, JWST, LSST, Simons Obs.) \bullet
- Reionization! HI intensity mapping! (SKA and others) \bullet
- The Ly α forest! (**DESI**) \bullet
- Neutrino masses (including **DESI**)! \bullet
- Primordial non-gaussianity (including **DESI**)! \bullet
- Primordial gravitational waves! \bullet
- Cosmic transients (high-z supernovae, radio/gamma-ray bursts) \bullet
- Alternative gravity!? \bullet

Summary

- \bullet observations.
- \bullet fundamental idea that galaxies form in virialized dark matter halos.
- \bullet principles.
- \bullet with ever-greater precision, and at ever-higher redshift.
- \bullet
- \bullet

The Λ CDM model makes lots of readily testable predictions and is extremely well constrained by

It is enormously successful as a scaffolding for predictive models of galaxy formation, based on the

 Λ CDM is likely incomplete, and none of its key ingredients are explained from fundamental physical

The roadmap of cosmological observations involves measuring the **positions and velocities of galaxies**

Modifications are only likely to affect our understanding of galaxy formation at very early times and on very small scales. Vice versa, observations at small scales/early times could uncover physics beyond $\Lambda CDM!$

Effects are subtle; contributions to better understanding galaxy evolution are important for cosmology!

References and Further Reading

- Textbooks (basic / astrophysical) \bullet
 - **Liddle** An Introduction to Modern Cosmology, 3rd Edition (ISBN: 9781118502143)
 - **Ryden** <u>https://doi.org/10.1017/9781316651087</u>
 - Huterer <u>https://doi.org/10.1017/9781009070232</u>
 - Mo, van den Bosch & White <u>https://doi.org/10.1017/CBO9780511807244</u> \bullet
 - **Peacock** <u>https://doi.org/10.1017/CBO9780511804533</u>
 - **Peebles** *Principles of Physical Cosmology* (ISBN: 9780691209814) [classic]
- Textbooks (advanced / early universe) \bullet
 - Weinberg Cosmology (ISBN: 9780198526827) [classic]
 - Baumann <u>https://doi.org/10.1017/9781108937092</u>
- A few useful review articles: \bullet
 - Davis "Cosmological constraints on dark energy", <u>https://arxiv.org/abs/1404.7266</u>
 - \bullet expansion of the Universe" <u>https://arxiv.org/abs/astro-ph/0310808</u>
 - parameters.pdf

Davis & Lineweaver "Expanding Confusion: common misconceptions of cosmological horizons and the superluminal

Lahav & Liddle, PDG Reviews "Cosmological Parameters" <u>https://pdg.lbl.gov/2024/reviews/rpp2024-rev-cosmological-</u>

Weinberg & White, PDG Reviews, "Dark Energy": <u>https://pdg.lbl.gov/2024/reviews/rpp2024-rev-dark-energy.pdf</u>