Numerical Simulations

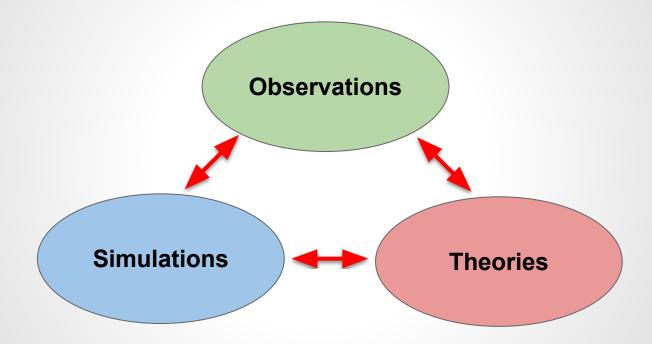
NCTS-TCA Summer Student Program Mini-Workshop 2024

> Hsi-Yu Schive (薛熙于) National Taiwan University

Outline

- Introduction
- (Magneto-)Hydrodynamics
- Self-gravity
- Particles

Why Simulations?

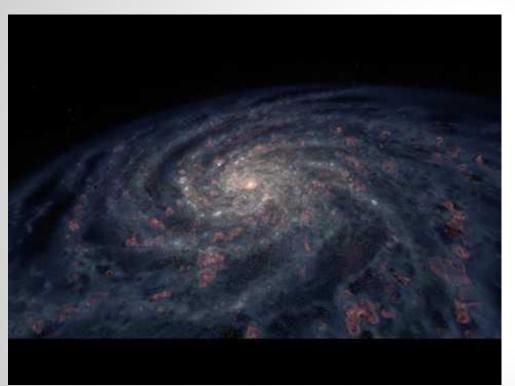


Example: Simulating Cosmic Gas

- Illustris TNG (<u>https://www.tng-project.org</u>)
- Cosmological magnetohydrodynamic simulations of galaxy formation
- Dark matter and gas
- Radiative cooling and heating, chemical enrichment
- Star formation and feedback
- Black hole formation and feedback
- Magnetic field

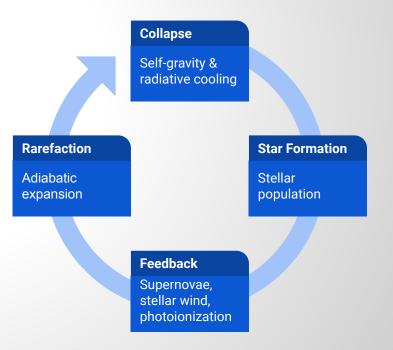
https://www.tng-project.org/movies/tng/tng50_sb2_gasvel_stars_1080p.mp4 Credit: TNG Collaboration

Example: Simulating Milky Way



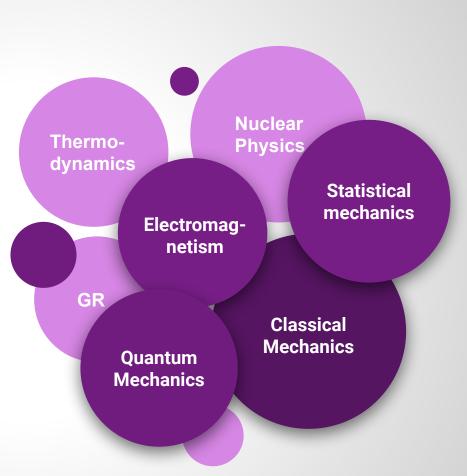
https://www.youtube.com/watch?v=52qIVFNJahc Credit: Advanced Visualization Laboratory at NCSA

- Isolated disk galaxy simulation
 - Similar to our Milky Way
- Physics cycle



Key Physics

- Hydrodynamics
- Magnetic field
- Gravity
- Dark matter
- Chemistry
- Radiative transfer
 - Cooling, ionization, etc
- Star formation and evolution
- Feedback
 - Supernovae explosion
 - Stellar wind
 - SMBH/AGN jets
 - 0 ...
- Multimessenger (cosmic rays, neutrinos, gravitational waves, ...)

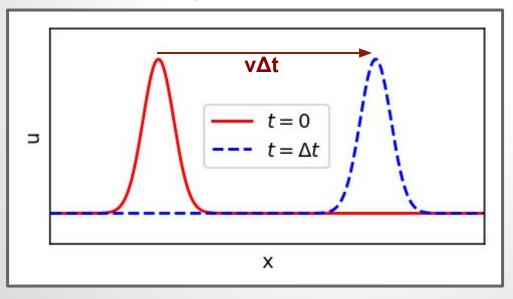


Key Techniques

- Numerical algorithms
- Parallel computing
 - CPU/GPU parallelization
- Code co-development
- Data analysis and visualization
- Debugging
- Reproducibility
 - Data sharing
 - Open source

Advection of a Scalar

- $rac{\partial u(x,t)}{\partial t} = -v rac{\partial u(x,t)}{\partial x}$
- Governing eq.
 - Scalar u is simply transported with a velocity v
 - Assuming v is constant
 - *u* is conserved $\rightarrow \int u(x,t)dx = constant$



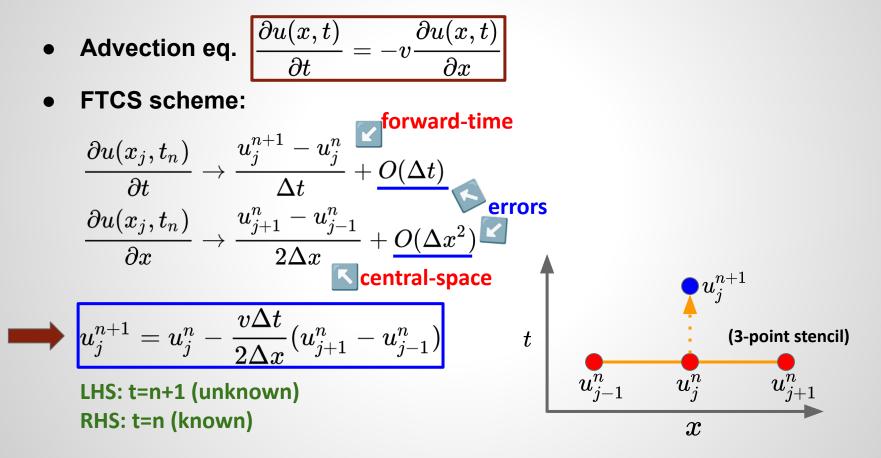
Finite Difference Approximation

Discretize space and time • u_{2}^{n+1} u_2^{n+1} $u^{n+1}_{\scriptscriptstyle A}$ u_1^{n+1} $u_{\scriptscriptstyle N}^{n+1}$ $egin{aligned} u(x,t) &\Rightarrow u_j^n \ x_j &= x_0 + j\Delta x \ t_n &= t_0 + n\Delta t \end{aligned}$ tupdate u by Δt boundary condition u_{2}^{n} u_{2}^{n} $u^n_{\scriptscriptstyle A}$ $u_{\scriptscriptstyle N}^n$ Given u_j^n , solve u_j^{n+1} initial condition **Taylor expansion** \boldsymbol{x}

$$f(lpha+\Deltalpha)=f(lpha)+f'(lpha)\Deltalpha+rac{1}{2!}f''(lpha)\Deltalpha^2+rac{1}{3!}f'''(lpha)\Deltalpha^3+\dots$$

- Use it to approximate partial derivatives by discrete u_i^n
- That's what differentiates different numerical schemes
 - May NOT be as trivial as you think!

Forward-Time Central-Space Scheme



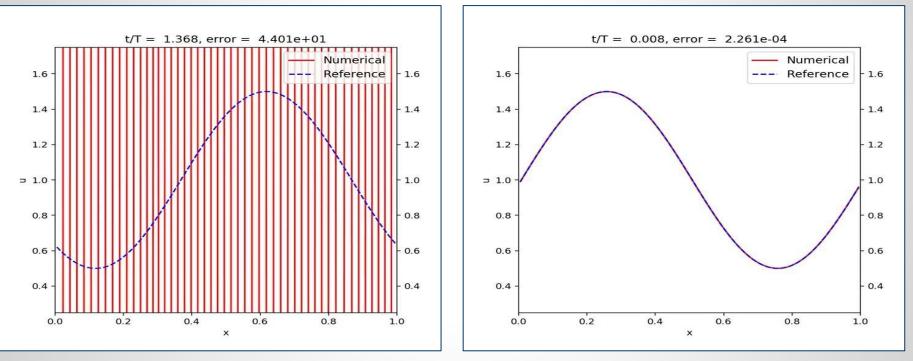
Forward-Time Central-Space Scheme

- Explicit schemes
 - $\circ u_j^{n+1}$ of each *j* can be computed explicitly from values at t_n
 - $\circ u_j^{n+1}$ of different j can be computed independently (i.e., the calculation of different u_j^{n+1} is fully decoupled)
 - Important for parallelization
 - $\circ~$ In comparison, <u>implicit</u> schemes solve coupled equations of u_j^{n+1} with different j simultaneously
 - For example, check the Crank–Nicolson method
- FTCS scheme is very simple. But, it is UNSTABLE in general for hyperbolic equations!
 - It can be demonstrated using the von Neumann stability analysis
 - See the next demo

Demo: Advection

FTCS → **unconditionally unstable**

Lax \rightarrow conditionally stable



Complete source code:

FTCS vs Lax: <u>https://gist.github.com/hyschive/1efd5f8f0b7eb2e6b7c92d2919f6beb7</u>

Lessons Learned from FTCS

- Numerical errors are dominated by amplitude errors
 - Both phase and dispersion errors are negligible
- Amplitude errors increase with time
 - Low-k (long-wavelength) errors dominate first
 - High-k (short-wavelength) errors appear later but grow faster (why?)
 - \circ Amplitude increases instead of decreases \rightarrow sign of instability
 - Smaller $\Delta t \rightarrow$ errors decrease, but still unstable!
- Is mass conserved?

Lax Scheme

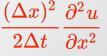
$$ullet u_j^{n+1} = egin{bmatrix} rac{1}{2}(u_{j+1}^n+u_{j-1}^n) - rac{v\Delta t}{2\Delta x}(u_{j+1}^n-u_{j-1}^n) \end{pmatrix}$$

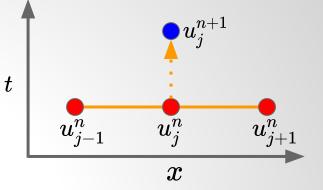
- Stability criterion: $\Delta t \leq \Delta x/v$
 - Courant-Friedrichs-Lewy (CFL) condition
 - \circ CFL number: $v\Delta t/\Delta x$
- But why?
 - For a time-step Δt , the max distance information can propagate is $v\Delta t$
 - But our finite difference scheme only collects data from $\varDelta x$
 - If $v\Delta t > \Delta x$, the correct update requires information <u>more distant than</u> <u>the finite difference scheme knows</u>
- Numerical dissipation: the Lax scheme can be rewritten as

$$u_{j}^{n+1} = u_{j}^{n} - rac{v\Delta t}{2\Delta x}(u_{j+1}^{n} - u_{j-1}^{n}) + rac{1}{2}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}),$$

original FTCS scheme

numerical dissipation





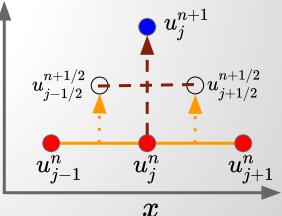
Lax-Wendroff Scheme

- Two-step approaches (similar to the trapezoidal rule of integration)
 - Step 1: evaluate $u_{j+1/2}^{n+1/2}$ defined at the half time-step n+1/2 and the cell interface j+1/2 with the Lax scheme

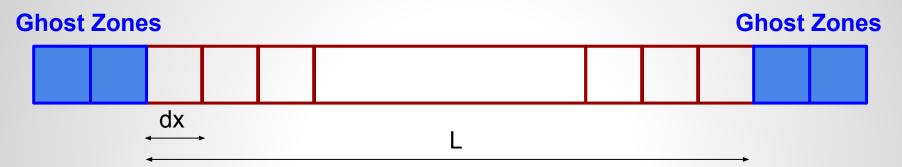
$$u_{j+1/2}^{n+1/2} = rac{1}{2}(u_{j+1}^n+u_j^n) - rac{v\Delta t}{2\Delta x}(u_{j+1}^n-u_j^n)$$

• Step 2: use $u_{j+1/2}^{n+1/2}$ to evaluate the half-step fluxes for the full-step update

$$u_{j}^{n+1} = u_{j}^{n} - rac{v\Delta t}{\Delta x}(u_{j+1/2}^{n+1/2} - u_{j-1/2}^{n+1/2})$$



Ghost Zones/Grids/Cells



- Ghost zones are used for setting the <u>boundary conditions</u>
 - Physical boundaries (e.g., periodic, outflow, inflow)
 - Numerical boundaries between different parallel processes
- Number of ghost zones depends on the stencil size
 - Lax-Friedrichs: 1
 - Higher-order schemes in general require more ghost zones
 - Affect parallel scalability

Hydrodynamics: Governing Equations

• Euler eqs.

eqs.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \qquad \leftarrow \text{mass conservation} \\
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v v + PI) = 0 \qquad \leftarrow \text{momentum conservation} \\
\frac{\partial E}{\partial t} + \nabla \cdot [(E + P)v] = 0 \qquad \leftarrow \text{energy conservation} \\
\text{ or energy conservation} \\
\text{ or energy conservation} \\
\text{ or energy density, } \\
\text{ or energy density density, } \\
\text{ or energy density density$$

- ρ : mass density, v: velocity, P: pressure, E: total energy density, *I*: identity matrix

$$E=e+rac{1}{2}
ho v^2$$
 , where e is the internal energy density

a

6 variables, 5 equations \rightarrow need <u>equation of state</u> to compute P •

• For example, ideal gas:
$$e=rac{P}{\gamma-1}$$
, where γ is the ratio of specific heat

Flux-Conservative Form in 1D

• Euler eqs. in a compact flux-conservative form:

$$rac{\partial oldsymbol{U}}{\partial t} + rac{\partial oldsymbol{F_x}}{\partial x} + rac{\partial oldsymbol{F_y}}{\partial y} + rac{\partial oldsymbol{F_z}}{\partial z} = 0$$

 \circ F_x , F_y , F_z are the fluxes along different directions

$$oldsymbol{F_x} = egin{bmatrix}
ho v_x \
ho v_x^2 + P \
ho v_x v_y \
ho v_x v_z \ (E+P) v_x \end{bmatrix} egin{array}{c} oldsymbol{F_y} = egin{bmatrix}
ho v_y v_x \
ho v_y^2 + P \
ho v_y v_z \ (E+P) v_y \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_x \
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_y \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \ (E+P) v_z \end{bmatrix} egin{array}{c} oldsymbol{F_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \
ho v_z v_z \end{bmatrix} egin{array}{c} oldsymbol{V_z} = egin{bmatrix}
ho v_z v_y \
ho v_z^2 + P \
ho v_z v_z \end{bmatrix} egin{array}{c} oldsymbol{V_z} = egin{bmatrix}
ho v_z v_y \
ho v_z v_z \
ho v_z v_z \end{bmatrix} egin{array}{c} oldsymbol{V_z} = egin{bmatrix}
ho v_z v_y \
ho v_z v_z \
ho v_z \
ho v_z v_z \
ho v_z v_z \
ho v_z v_z \
ho v_z$$

Finite-Volume Scheme

- Divergence theorem: $\int_V \frac{\partial U}{\partial t} dV = -\int_V (\boldsymbol{\nabla} \cdot \boldsymbol{F}) dV = -\oint_S (\boldsymbol{F} \cdot \boldsymbol{n}) dS$
- Integrate over the cell volume $\Delta x \Delta y \Delta z$ and time interval $\Delta t = t^{n+1} t^n$

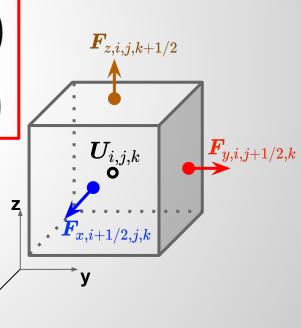
$$\begin{split} \boldsymbol{U}_{i,j,k}^n &\equiv \frac{1}{\Delta x \Delta y \Delta z} \int_{z_{k-1/2}}^{z_{k+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} \int_{x_{i-1/2}}^{x_{i+1/2}} U(x,y,z,t^n) dx dy dz \\ \boldsymbol{F}_{x,i-1/2,j,k}^{n+1/2} &\equiv \frac{1}{\Delta y \Delta z \Delta t} \int_{t^n}^{t^{n+1}} \int_{z_{k-1/2}}^{z_{k+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} F(x_{i-1/2},y,z,t) dy dz dt \\ \text{similar for } \boldsymbol{F}_{y,i,j-1/2,k}^{n+1/2} \text{ and } \boldsymbol{F}_{z,i,j,k-1/2}^{n+1/2} \end{split}$$

Finite-Volume Scheme

• Euler eqs. can be casted into the following form:

$$oldsymbol{U}_{i,j,k}^{n+1} = oldsymbol{U}_{i,j,k}^n - rac{\Delta t}{\Delta x} \left(oldsymbol{F}_{x,i+1/2,j,k}^{n+1/2} - oldsymbol{F}_{x,i-1/2,j,k}^{n+1/2}
ight) \ - rac{\Delta t}{\Delta y} \left(oldsymbol{F}_{y,i,j+1/2,k}^{n+1/2} - oldsymbol{F}_{y,i,j-1/2,k}^{n+1/2}
ight) \ - rac{\Delta t}{\Delta z} \left(oldsymbol{F}_{z,i,j,k+1/2}^{n+1/2} - oldsymbol{F}_{z,i,j,k-1/2}^{n+1/2}
ight)$$

- Note that this form is EXACT!
 - No approximation has been made
- \circ $oldsymbol{U}_{i,j,k}^n$: volume-averaged values
- $\circ ~~ oldsymbol{F}_{x,i-1/2,j,k}^{n+1/2}$: time- and area-averaged values



Finite-Volume Scheme

- The major task is to compute $m{F}_{x,i-1/2,j,k}^{n+1/2}$ etc
- Conservative quantities $U_{i,j,k}^n$ (i.e., mass, momentum, energy) are guaranteed to conserve to the machine precision!
- It doesn't mean no numerical errors. It just means that numerical errors won't contaminate conservation laws.

Lax-Friedrichs Scheme for Hydro

• Lax-Friedrichs scheme can be rewritten into a flux-conservative form

$$u_{j}^{n+1} = u_{j}^{n} - rac{v\Delta t}{2\Delta x}(u_{j+1}^{n} - u_{j-1}^{n}) + rac{1}{2}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}) \; ,$$

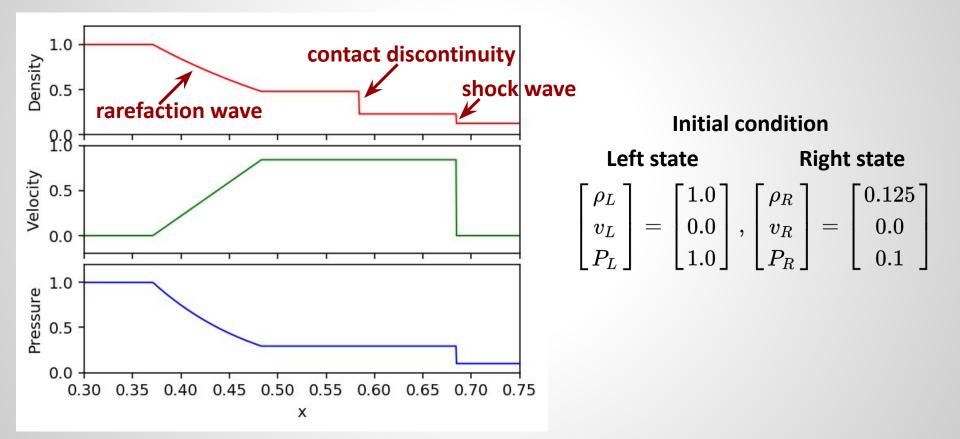
$$egin{aligned} &u_{j}^{n+1} = u_{j}^{n} - rac{\Delta t}{\Delta x} (ilde{F}_{j+1/2}^{n} - ilde{F}_{j-1/2}^{n}) \ & ilde{F}_{j-1/2}^{n} \equiv rac{1}{2} \left[(vu_{j}^{n} + vu_{j-1}^{n}) - rac{\Delta x}{\Delta t} (u_{j}^{n} - u_{j-1}^{n})
ight] \ &= rac{1}{2} \left[(F(u_{j}^{n}) + F(u_{j-1}^{n})) - rac{\Delta x}{\Delta t} (u_{j}^{n} - u_{j-1}^{n})
ight] \end{aligned}$$

• Hydro: simply evaluate F_i with hydrodynamic fluxes

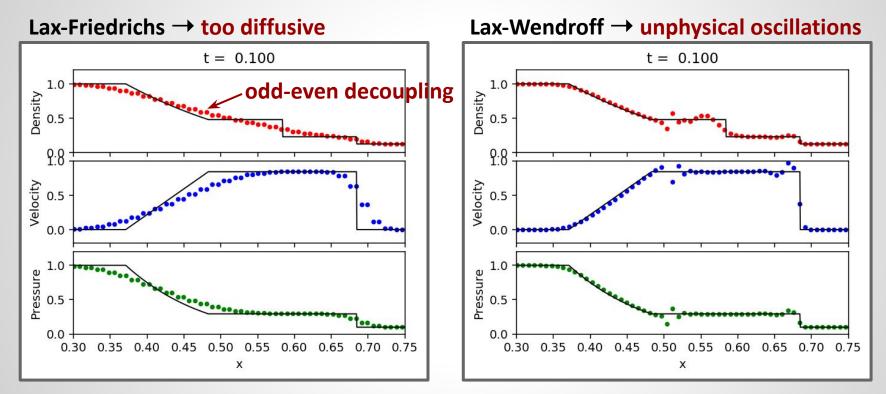
•

Courant condition: $\Delta t \leq rac{\Delta x}{|v_x|+C_{s'}}$ – sound speed

Sod Shock Tube Problem



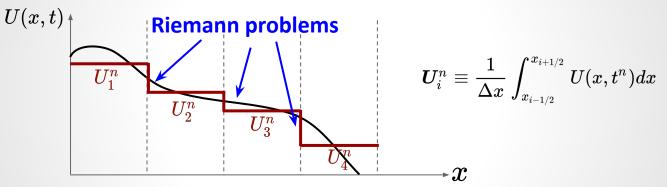
Test on Sod Shock Tube Problem



Motivate <u>high-resolution shock-capturing</u> schemes

High-Resolution Shock-Capturing Methods

- Godunov method
 - Approximate data with a <u>piecewise constant</u> distribution (in practice, higher-order approximations like <u>piecewise linear/parabolic</u> are adopted)



- Solve the local Riemann problems
 - Piecewise constant data with a single discontinuity
 - Apply either exact or approximate solutions
- Update data by averaging the Riemann problem solution over each cell
 - Equivalently, we can solve the intercell fluxes

Riemann Problem in 1D Hydro

• Euler eqs. in 1D:
$$\frac{\partial U}{\partial t} + \frac{\partial F_x(U)}{\partial x} = 0, \ U = \begin{bmatrix} \rho \\ \rho v_x \\ E \end{bmatrix}, \ F_x = \begin{bmatrix} \rho v_x \\ \rho v_x^2 + P \\ (E+P)v_x \end{bmatrix}$$

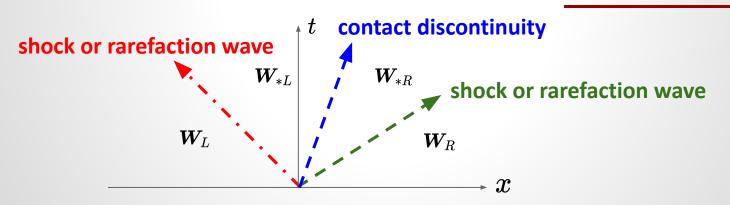
• Riemann problem:

$$egin{aligned} & egin{aligned} E \ E \ \end{bmatrix} & egin{aligned} & egin{aligned} (E+P)v_x \ \end{bmatrix} \ & egin{aligned} & egin{aligned} & egin{aligned} & eta_L \ & eta_R \$$

$$egin{array}{c} egin{array}{c} egin{array}$$

Riemann Problem in 1D Hydro

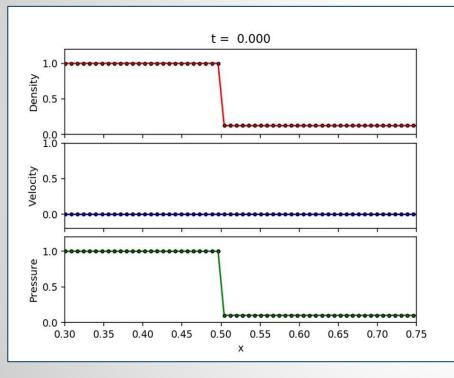
- Exact solution of the Riemann problem involves three waves
 - Contact discontinuity
 - Shock wave
 - Rarefaction wave
- Decompose the entire domain into four regions W_L , W_{*L} , W_{*R} , W_R

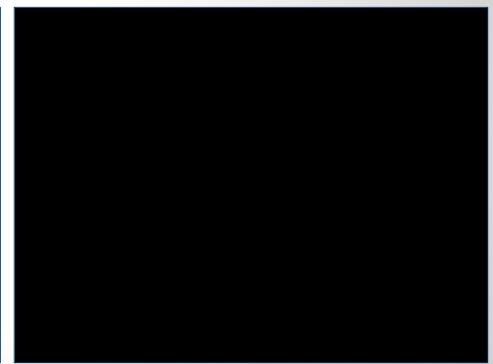


Demo: Sod Shock Tube

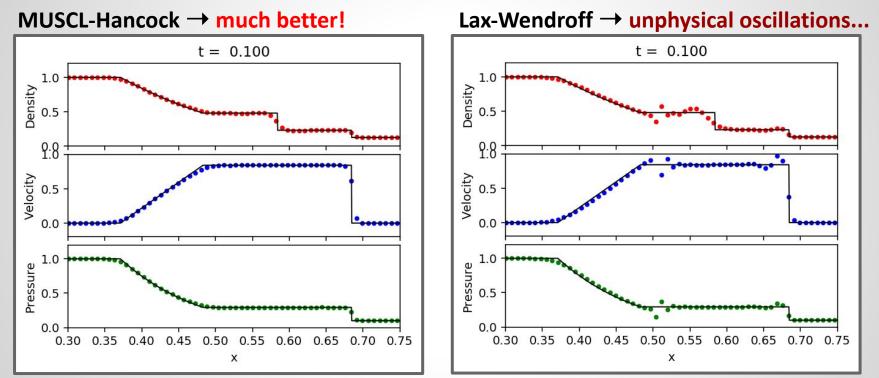
MUSCL-Hancock

Lax-Wendroff





Demo: Sod Shock Tube



Complete source codes:

- MUSCL-Hancock: <u>https://gist.github.com/hyschive/0e3472c48df1e7eb0b2018a59bc2c111</u>
- Lax-Wendroff: https://gist.github.com/hyschive/46bab6434f1b9b9aee23aeaeb71b90b6

Magnetohydrodynamics (MHD)

- $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$ $\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v v BB + P^* I) = 0$ $\frac{\partial E}{\partial t} + \nabla \cdot [(E + P^*)v B(B \cdot v)] = 0$ $\frac{\partial B}{\partial t} \nabla \times (v \times B) = 0$ $\leftarrow \text{ induction eq. + ideal Ohm's law}$ $E + v \times B = 0$ Ideal MHD: • $\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} = 0$ • $E = e + rac{1}{2}
 ho v^2 + rac{B^2}{2}, \ \ P^* = P + rac{B^2}{2}$
- 9 variables to be solved by the 8 equations above + equation of state
- Divergence-free constraint on the magnetic field: $\nabla \cdot B = 0$

Flux-conservative Form for MHD

•
$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}_{\boldsymbol{x}}}{\partial \boldsymbol{x}} + \frac{\partial \boldsymbol{F}_{\boldsymbol{y}}}{\partial \boldsymbol{y}} + \frac{\partial \boldsymbol{F}_{\boldsymbol{z}}}{\partial \boldsymbol{z}} = 0,$$

$$\boldsymbol{U} = \begin{bmatrix} \rho \\ \rho v_{x} \\ \rho v_{x} \\ \rho v_{y} \\ \rho v_{z} \\ \rho v_{z} \\ \boldsymbol{F}_{\boldsymbol{x}} \\ \boldsymbol{B}_{\boldsymbol{y}} \\ \boldsymbol{B}_{\boldsymbol{z}} \end{bmatrix}, \quad \boldsymbol{F}_{\boldsymbol{x}} = \begin{bmatrix} \rho v_{x} \\ \rho v_{x} + P^{*} - B_{x}^{2} \\ \rho v_{x} v_{y} - B_{x} B_{y} \\ \rho v_{x} v_{z} - B_{x} B_{z} \\ (E + P^{*}) v_{x} - B_{x} (\boldsymbol{B} \cdot \boldsymbol{v}) \\ 0 \\ v_{x} B_{y} - v_{y} B_{x} \\ v_{x} B_{z} - v_{z} B_{x} \end{bmatrix}, \text{ similarly for } \boldsymbol{F}_{\boldsymbol{y}}, \boldsymbol{F}_{\boldsymbol{z}}$$

- Fluid conserved variables can be updated similarly using the finite-volume scheme for pure hydro
- Key question: how to <u>ensure the divergence-free constraint</u> when updating the magnetic field?

Constrained Transport (CT) Method

- Stokes' theorem: $\int_A \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{A} = \int_A [\boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B})] \cdot d\boldsymbol{A} = \oint_{\partial A} \boldsymbol{v} \times \boldsymbol{B} \cdot d\boldsymbol{l}$
 - Electromotive force (EMF): $\boldsymbol{\varepsilon} = -\boldsymbol{v} \times \boldsymbol{B}$
- Integrate over cell area (e.g., $\Delta y \Delta z$) and time interval $\Delta t = t^{n+1} t^n$

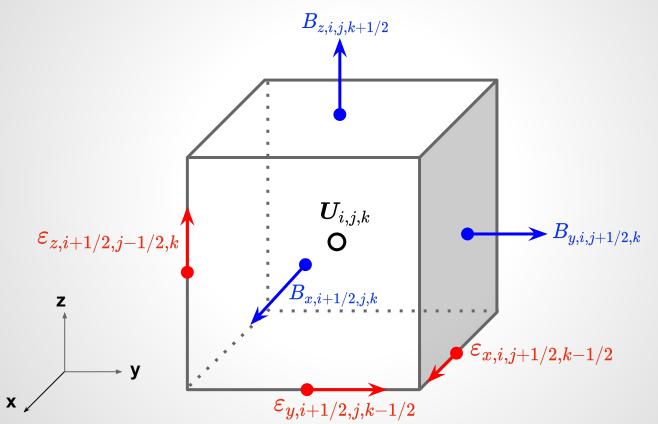
$$egin{aligned} B_{x,i-1/2,j,k}^n &\equiv rac{1}{\Delta y \Delta z} \int_{z_{k-1/2}}^{z_{k+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} B_x(x_{i-1/2},y,z,t^n) dy dz \ &arepsilon_{y,i-1/2,j,k-1/2}^n &\equiv rac{1}{\Delta y \Delta t} \int_{t^n}^{t^{n+1}} \int_{y_{j-1/2}}^{y_{j+1/2}} arepsilon_y(x_{i-1/2},y,z_{k-1/2},t) dy dt \ &arepsilon_{z,i-1/2,j-1/2,k}^n &\equiv rac{1}{\Delta z \Delta t} \int_{t^n}^{t^{n+1}} \int_{z_{k-1/2}}^{z_{k+1/2}} arepsilon_z(x_{i-1/2},y_{j-1/2},z,t) dz dt \end{aligned}$$

Constrained Transport (CT) Method

$$egin{aligned} B^{n+1}_{x,i-1/2,j,k} &= B^n_{x,i-1/2,j,k} - rac{\Delta t}{\Delta y} \Big(arepsilon_{z,i-1/2,j+1/2,k}^{n+1/2} - arepsilon_{z,i-1/2,j-1/2,k}^{n+1/2} \Big) \ &+ rac{\Delta t}{\Delta z} \Big(arepsilon_{y,i-1/2,j,k+1/2}^{n+1/2} - arepsilon_{y,i-1/2,j,k-1/2}^{n+1/2} \Big) \end{aligned}$$

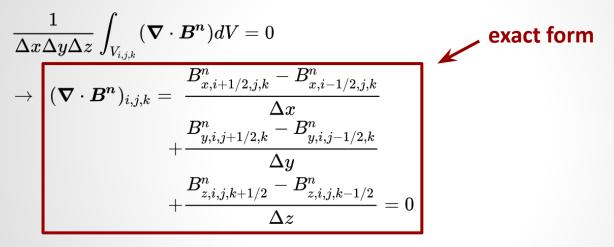
- \circ This form is again exact \rightarrow similar to the finite-volume formulation
- $\circ \hspace{0.1 cm} B^n_{x,i-1/2,j,k}$: area-averaged magnetic field
- $\circ \ \ arepsilon_{z,i-1/2,j\pm 1/2,k}^{n+1/2}, \ \ arepsilon_{y,i-1/2,j,k\pm 1/2}^{n+1/2}$: time- and line-averaged EMF
- Similar expressions can be derived for $B^{n+1}_{y,i,j-1/2,k}$ & $B^{n+1}_{z,i,j,k-1/2}$
- Area-averaged magnetic field are located at the <u>cell faces</u> instead of centers → <u>staggered grid</u>

Staggered Grid in CT



Divergence Free in CT

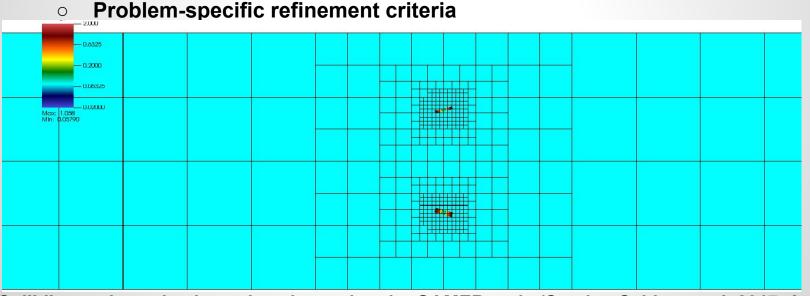
• Finite-volume representation of the divergence-free constraint:



- **CT update guarantees** $\nabla \cdot B^{n+1} = \nabla \cdot B^n$
 - Divergence-free constraint is preserved to the machine precision
 - But it must be satisfied in the initial condition
 - The exact way to compute EMF varies from scheme to scheme

Adaptive Mesh Refinement (AMR)

- Astrophysical simulations require a large dynamic range
 - 10⁴ 10⁹ spatial scales
 - Uniform-resolution simulations become impractical
- AMR: allow resolution to adjust locally and automatically



Colliding active galactic nucleus jets using the GAMER code (Sandor, Schive, et al. 2017, ApJ)

Moving Mesh

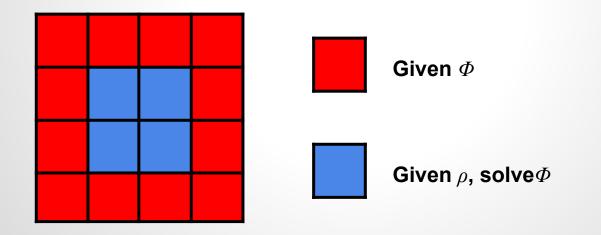
- Lagrangian instead of Eulerian coordinates
- Galilean invariant
- Unstructured mesh
- Finite-volume scheme



Kelvin-Helmholtz instability simulated with the Arepo code

Self-gravity

- Poisson equation: $abla^2 \phi(m{r}) =
 ho(m{r})$
 - ρ : mass density, Φ : gravitational potential, assuming $4\pi G=1$
- Task: given ρ in V and ϕ at ∂V , where V is the computational domain of interest and ∂V is the boundary \rightarrow solve ϕ in V



Self-gravity: Relaxation Methods

•
$$\nabla^2 \phi = \rho \rightarrow \frac{\partial \phi}{\partial t} = \nabla^2 \phi - \rho \quad \longleftarrow \text{ Diffusion eq. with source } -\rho$$

 \circ Let the system relax until equilibrium is established $rac{
o\, au}{\partial t}=0 o
abla^2\phi=
ho$

• 2D discrete form using a FTCS scheme (assuming $\Delta x = \Delta y = \Delta$):

$$rac{\phi_{i,j}^{n+1}-\phi_{i,j}^n}{\Delta t} = rac{1}{\Delta^2} \Big(\phi_{i+1,j}^n + \phi_{i-1,j}^n + \phi_{i,j+1}^n + \phi_{i,j-1}^n - 4 \phi_{i,j}^n \Big) -
ho_{i,j}$$

Jacobi's method

 \circ CFL stability: $\Delta t \leq \Delta^2/4
ightarrow {
m let} \ \Delta t = \Delta^2/4$

$$\phi_{i,j}^{n+1} = rac{1}{4} \Big(\phi_{i+1,j}^n + \phi_{i-1,j}^n + \phi_{i,j+1}^n + \phi_{i,j-1}^n - \Delta^2
ho_{i,j} \Big)$$

→ Iterate until relaxed (convergence)

Self-gravity: Discrete Fourier Transform

• Poisson eq. in 1D:
$$\frac{\partial^2 \phi}{\partial x^2} =
ho$$

- Fourier transform: $\partial/\partial x \to ik, \phi(x) \to \Phi(k), \rho(x) \to D(k)$ $\Phi(k) = -\frac{D(k)}{k^2} \to \phi(x) = FT^{-1}(\Phi(k))$
 - Assuming periodic boundary conditions above
 - For isolated (vacuum) boundary conditions, it requires convolution of $\rho(r)$ (with zero padding) and the Green's function r⁻¹

Particles: What Do They Represent?

- 1. Planets, stars, supernovae, black holes
 - a. Each particle represents a single point mass
- 2. Star clusters
 - a. Each particle represents a bunch of stars
- 3. Dark matter
 - a. Finite sampling of the phase space distribution function
 - b. Can be either collisionless (CDM) or collisional (SIDM)
- 4. Gas \rightarrow Smooth Particle Hydrodynamics (SPH)
 - a. Lagrangian nature \rightarrow adaptive resolution
 - b. Mesh-free
 - c. Self-gravity can be computed in the same way as other types of particles
- 5. Tracers
 - a. Trace the trajectory of gas elements
- 6. Photons
 - a. Radiation transfer

Particle Properties

- 1. Point-mass objects
 - a. Two-body relaxation may be essential \rightarrow collisional system
 - b. Gravity diverges at the center \rightarrow numerically challenging
 - c. Binaries
- 2. Finite-sized objects
 - a. Star clusters, dark matter
 - b. Avoid two-body relaxation and binary formation \rightarrow smooth out gravity in the short range (smoothing/softening length)
- 3. Particles can be created, destroyed, or scattered on-the-fly
- 4. Particle properties may change on-the-fly
 - a. Mass, age, metalicity, spin, stellar composition, ...
- 5. Feedback
 - a. Stellar wind, AGN jets, SN explosion, ...

Computing Self-gravity

- Direct N-body: $a_i = G \sum_{j \neq i} m_j \frac{r_j r_i}{|r_j r_i|^3}$
 - Computational complexity $O(N^2) \rightarrow$ extremely expensive
 - Mostly used when particles represent point masses where very high accuracy is essential
- Particle Mesh (PM)
 - \circ Deposit particle mass onto grids \rightarrow grid-base Poisson solver \rightarrow interpolate gravity back to particles
- Tree / Fast Multipole Method
 - Multipole expansion → Group distant particles into a single large particle (higher-order corrections such as quadrupole can be included)
- Hybrid Method: P³M, TreePM
 - Long range: PM
 - Short range: direct N-body (P³M) or tree (TreePM)
 - Be careful about connecting long- and short-range forces

Orbit Integration

• Kick operator *K*: update velocity while fixing position

$$X(\Delta t) egin{bmatrix} m{r}(t) \ m{v}(t) \end{bmatrix} = egin{bmatrix} m{r}(t) \ m{v}(t) + m{a} \Delta t \end{bmatrix}$$

 \boldsymbol{K}

• Drift operator *D*: update position while fixing velocity

$$D(\Delta t) egin{bmatrix} oldsymbol{r}(t) \ oldsymbol{v}(t) \end{bmatrix} = egin{bmatrix} oldsymbol{r}(t) + oldsymbol{v}(t) \Delta t \ oldsymbol{v}(t) \end{bmatrix}$$

• KDK scheme: $K(\Delta t/2) D(\Delta t) K(\Delta t/2)$

 $egin{aligned} oldsymbol{v}(t+\Delta t/2) &= oldsymbol{v}(t) + oldsymbol{a}(t)\Delta t/2 \ oldsymbol{x}(t+\Delta t) &= oldsymbol{x}(t) + oldsymbol{v}(t+\Delta t/2)\Delta t \ oldsymbol{v}(t+\Delta t) &= oldsymbol{v}(t+\Delta t/2) + oldsymbol{a}(t+\Delta t)\Delta t/2 \end{aligned}$

Euler's scheme (1st order)

$$egin{aligned} oldsymbol{x}(t+\Delta t) &= oldsymbol{x}(t) + oldsymbol{v}(t)\Delta t \ oldsymbol{v}(t+\Delta t) &= oldsymbol{v}(t) + oldsymbol{a}(t)\Delta t \end{aligned}$$

- Equivalent to the Leapfrog scheme (2nd order)
- Time reversibility
- \circ Symplectic nature \rightarrow preserve a slightly perturbed Hamiltonian \rightarrow good for long-term evolution
- One force evaluation per time-step

Code Snippets

DKD

<pre># calculate a(t) r = (x*x + y*y)**0.5 a_abs = G*M/(r*r) ax = -a_abs*x/r</pre>	<pre># drift: update position by 0.5*dt x = x + vx*0.5*dt y = y + vy*0.5*dt</pre>
ay = -a_abs*y/r	<pre># kick: calculate a(t+0.5*dt) and use that # to update velocity by dt</pre>
<pre># use v(t) and a(t) to update position # and velocity by dt x = x + vx*dt y = y + vy*dt vx = vx + ax*dt vy = vy + ay*dt</pre>	r = (x*x + y*y)**0.5 $a_abs = G*M/(r*r)$ $ax = -a_abs*x/r$ $ay = -a_abs*y/r$ vx = vx + ax*dt vy = vy + ay*dt
	<pre># drift: use v(t+dt) to update position # by another 0.5*dt x = x + vx*0.5*dt y = y + vy*0.5*dt</pre>

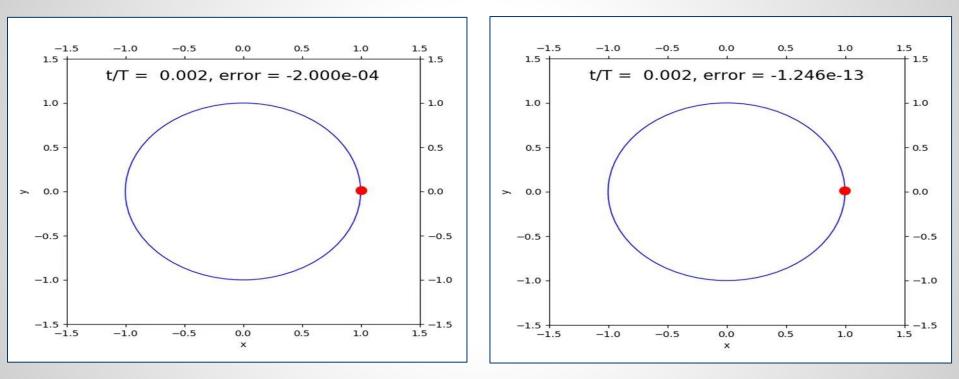
Complete source codes:

- Euler: <u>https://gist.github.com/hyschive/5db0f4235f7ccabf5567e30a2dacca07</u>
- DKD: <u>https://gist.github.com/hyschive/b59143f14ee89d188a06a1ae29c9cfe7</u>

Demo

Euler

DKD



Questions!