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STATUS OF THIS FIELD
1. You can be known for discovering or addressing something fundamental

2. There are more questions than theories and answers

3. The duty-cycle of making your own hypothesis and then test it is short

4. This field is under-credited and is presently not particularly hot L



Why Star-Formation Matters



Why Star-Formation Matters

How the Universe formed?
(cosmology, large-scale structure formation)

How the Milky Way formed?
(galaxy evolution, Galactic archaeology)



Stars Make Galaxies and the Parent Dark Halo Visible to us



Uncertain Baron Physics
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(i) How sub-halos (candidates 
of galaxies ?) accrete 
baryonic material? And 
how feedback and other 
physics quench the 
accretion (e.g., AGN 
feedback, ram pressure 
stripping in a galaxy 
cluster). The observations 
of inter-galactic medium 
(IGM) are to address these 
issues.

(ii) How the first-generation 
stars (also known as the 
Population III stars) 
formed, and what were 
their roles in shaping the 
visible universe?

M-𝜎 relation:    !
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Zaw et al. 2020, ApJ, 897, 11
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Kennicutt & Evans (2012)
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Stellar Initial Mass Function

https://en.wikipedia.org/wiki/Initial_mass_function
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Uncertain Baron Physics
(1) Halo Occupation Distribution (2) Kennicutt-Schmidt Law (3) Gao-Solomon Relation

Kennicutt & Evans (2012)

Stellar Mass-Luminosity Relation

Kuiper et al. 1938, ApJ, 88, 472
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Stellar Initial Mass Function
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Kennicutt & Evans (2012)

Explain 1: free-fall timescale

Σ!"# = 2.5×10$%
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Kennicutt et al. 1998, ApJ, 498, 541
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Assuming constant scale-height

Star-formation volume density

Σ!"# ∝ 𝜌!"#
     Σ&'( ∝ 𝜌&'(



Uncertain Baron Physics
(1) Halo Occupation Distribution (2) Kennicutt-Schmidt Law (3) Gao-Solomon Relation

Kennicutt & Evans (2012)

Explain 2: galactic dynamical timescale

Σ!"# = 2.5×10$%
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Kennicutt et al. 1998, ApJ, 498, 541

Σ!"# ∝
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𝜏012

∝ Σ&'(Ω&'(

: local orbital timescaleΩ&'(
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Kennicutt & Evans (2012)

Σ!"# = 2.5×10$%
Σ&'(

1 𝑀⊙ 𝑝𝑐$*

+.%

𝑀⊙𝑦𝑟$+𝑘𝑝𝑐$*

Kennicutt et al. 1998, ApJ, 498, 541

KS-law Implies a very low SFE (not well explained by far)
There are some other physics to quench Star-formation
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Kennicutt & Evans (2012)

𝑆𝐹𝑅 = (1.8×10$3)× 4!"#$"
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Gao & Solomon 2004, ApJ, 606, 271
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(1) Halo Occupation Distribution (2) Kennicutt-Schmidt Law (3) Gao-Solomon Relation

Kennicutt & Evans (2012)

𝑆𝐹𝑅 = (1.8×10$3)× 4!"#$"
+ 4⊙

 𝑀⊙𝑦𝑟$+

Gao & Solomon 2004, ApJ, 606, 271

Again this law implies very low star-forming efficiency.
In addition, the definition of dense gas remains ambiguous 
(Jiao et al. submitted).

Sihan Jiao



Uncertain Baron Physics
(1) Halo Occupation Distribution (2) Kennicutt-Schmidt Law (3) Gao-Solomon Relation

Kennicutt & Evans (2012)

𝑆𝐹𝑅 = (1.8×10$3)× 4!"#$"
+ 4⊙

 𝑀⊙𝑦𝑟$+

Gao & Solomon 2004, ApJ, 606, 271

This Law is very strange.
Ten molecular clouds of 105 𝑀⊙ of gas mass and 
one molecular cloud with  106 𝑀⊙ of gas mass 
consume the same amount of gas mass to star-
formation every year, in spite that the stars they 
form are very different 
(Jiao, Xu, Liu et al. in prep.)

Sihan Jiao



Stars Form in Clusters (Multiplicity is Essential)



Stellar Initial Mass Function

https://en.wikipedia.org/wiki/Initial_mass_function



𝑴𝒎𝒂𝒙 −𝑴𝒆𝒄𝒍 relation
Weidner, Kroupa, Bonnell 2010,MNRAS, 401, 275





20 pc

Atomic Hydrogen

Molecular Hydrogen (103-106𝑀⊙)

Dense Molecular Clump/Core (1-102𝑀⊙)

0.1 pc

A Simplified Picture of Interstellar Medium 
1 pc = 3×10+6 meters



A Simplified Picture of Interstellar Medium 
1 pc = 3×10+6 meters

Yuxin Lin

Lin, Yuxin et al. 2016, ApJ, 828, 32
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Criterion for Self-Gravitational Fragmentation
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Equation of Continuity (with pressure P and gravitational acceleration �⃗�):
mass:

momentum:
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Poisson Equation
∇*𝜙 = 4𝜋𝐺𝜌

Perturbation theory
Equation of state
P = 𝑐'$𝜌, 
𝑐' ≡isothermal sound speed

𝜌 = 𝜌. + 𝜌+,    𝜌. ≫ 𝜌+,    ∇𝜌. = 0  [uniform initial condition]

P = 𝑃. + 𝑃+,    𝑃. ≫ 𝑃+,    ∇𝑃. = 0  [uniform initial condition]

�⃗� = �⃗�. + �⃗�+,    �⃗�. = 0 [initially quiescent cloud]

𝜙 = 𝜙. + 𝜙+,    𝜙. ≫ 𝜙+

Plugging into the two equations of continuity, and the Poisson equation
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Dispersion relation      9
&;'
9:&

−𝑐(*∇*𝜌+ = 4𝜋𝐺𝜌.𝜌+

(4)

(5)
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define  𝑘B =
%CD;(
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 (Jeans length)

When   𝑘 < 𝑘B,   𝜔* < 0,   perturbation grows exponentially
              𝑘 > 𝑘B,   𝜔* > 0,   perturbation oscillates

𝑘 =
2𝜋
𝜆

⟹ perturbation grows exponentially when

     𝜆 > 𝜆B ≡
*C
=)
= 𝑐(

C
D;(

  (Jeans length)

⟹ mass of perturbation

     𝑀B ≡
%
F
𝜋 G)

*

F
𝜌. (Jeans mass)

An initially uniform and quiescent molecular cloud will fragment into sub-
structures of Jeans masses. The spatial separations of these sub-structures 
are approximately the Jeans length.
An initially uniform and quiescent molecular cloud will just collapse to form 
a black hole.
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(1) Linearization works OK with the 1st order equations, 
but does not make sense at the 0th order

𝜌 = 𝜌. + 𝜌+,    𝜌. ≫ 𝜌+,    ∇𝜌. = 0  [uniform initial condition]
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An initially quiescent cloud cannot exist. A finite-sized cloud will undergo 
gravitational contraction. 
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⟹ ∇𝜙. = 0 ⟹ ∇*𝜙 = 0 ≠ 4𝜋𝐺𝜌.

(2) The growing timescale is minimized when 𝜔*  is maximized at 𝒌 = 𝟎

𝜔* = 𝑘*𝑐(* − 4𝜋𝐺𝜌.Global collapse has a shorter characteristic 
timescale than perturbation growth

An initially quiescent cloud cannot exist. A finite-sized cloud will undergo 
gravitational contraction. 
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An initially uniform molecular cloud cannot 
fragment to form a cluster of star

To make cloud fragmentation efficient, we need to 
make the global free-fall timescale larger than the local 

free-fall timescale 

𝑡-- =
3𝜋
16𝐺𝜌

Molecular gas mass needs to be concentrated to 
sheets or filamentary structures

c.f. Larson, R. D. 1985, MNRAS, 214, 379



My Proposals

Liu, H. B. et al. 2012, ApJ, 745, 61



1. Origin of High-Mass Stellar Cluster



A Tomographic View in the 13CO Velocity Channel Map
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OB Cluster-forming Regions in Actual Observations



W49A

Galvan-Madrid, R.. et al. 2013, A&A, 779, 121



G10.6-0.4

Liu, H. B. et al. 2012, ApJ, 745, 61
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Flattened, gravitationally unstable rotating structure

Liu, H. B. et al. 2019, ApJ, 871, 185
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Liu, H. B. et al. 2019, ApJ, 871, 185



Summary – What we do not understand
Kennicutt-Schmidt Law & Gao-Solomon 
Relation
Stellar Initial Mass Function
Energetic and Kinematics in the Star-
forming Molecular Clouds
1. Role of turbulence
2. Role of magnetic field
3. Role of Feedback and cloud-cloud collision, galactic dynamics, etc.

The origin of SMBH and the formation 
of the M-𝜎 relation


