# Observational Cosmology Tomomi Sunayama (ASIAA)

# How did the Universe begin?

What is the Universe made of?

How does the Universe evolve?



"Cosmic Microwave Background" Dark Energy **Accelerated Expansion** Afterglow Light Pattern Dark Ages **Development of** Galaxies, Planets, etc. 375,000 yrs. Inflation Quantum Fluctuations 1st Stars about 400 million yrs. **Big Bang Expansion** 13.77 billion years







"Cosmic Microwave Background" Dark Energy **Accelerated Expansion** Afterglow Light Pattern Dark Ages **Development of** Galaxies, Planets, etc. 375,000 yrs. Inflation Quantum **Fluctuations** 1st Stars about 400 million yrs. **Big Bang Expansion** 13.77 billion years

### Cosmic Microwave Background (CMB)

- The farthest and oldest light that we can observe directly
- The Universe is homogeneous and isotropic



### CMB can tell us energy budget of our Universe

• The model fits the data remarkably well!



# Standard Cosmological Model

Our Universe can be explained by six parameters ( $\Lambda$ CDM model)



- Matter density  $\Omega_m$
- ullet Baryon density  $\Omega_b$
- Hubble parameter h
- Cosmological constant $\Lambda$
- Initial amplitude  $\sigma_8$  and slope n of power spectrum of fluctuations

# CMB Power Spectrum can tell us energy budget of our Universe

 The amplitude and the location of peaks can tell us about the energy content of the Universe.



# Standard model of the Universe: $\Lambda$ CDM Era of precision cosmology



Credit: ESA/Planck Collaboration

- Dark Energy(DE)
  - accelerates the expansion
  - dominate the total energy density
  - first measured by SNela
- geometrically flat

We assume DE density doesn't change in time (cosmological constant:  $\Lambda$ ) and GR works on all scale

# Standard model of the Universe: **△CDM** Things we don't know...



Credit: ESA/Planck Collaboration

DE requires new physics beyond the standard model of elementary particles and fields



- Dark Energy
  - cosmological constant  $\Lambda$
  - does the DE density change in time? (e.g., dynamic scalar field)
  - due to break down of General Relativity (GR)?

# Measurement of Expansion History Geometrical probes

- "Standard Candle": Supernovae (SNe) Ia → measure relative distances assuming brightness of SNe Ia is understood for any SNe Ia
- "Standard Ruler": Baryon Acoustic Oscillation (BAO) → measure absolute distance since the peak location of BAO does not change as a function of time



# Cosmology 101

#### FRW metric and Hubble Parameter

Flat geometry under special relativity (no expansion of space)

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$

Flat geometry under general relativity (space can be expanded)

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

(Friedmann–Robertson–Walker (FRW) metric)

Hubble Parameter H(t) measures the expansion rate of the Universe:

$$H(t) = \dot{a}(t)/a(t)$$

### **Hubble's Law**

"Redshift"

 Hubble discovered that galaxies are moving away from us, and distant galaxies recedes faster

$$a(z) = \frac{1}{1+z}$$



# Cosmology 102

Expansion rate of the Universe

$$H^2(a) = H_0^2 \left[ \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_a^1 \frac{da'}{a'} \left[ 1 + w(a') \right] \right\} \right].$$

$$w(a) = w_0 + w_a(1-a),$$

Distances (Comoving, and angular diameter)

$$D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')} \ .$$

$$D_A(z) = K^{-1/2} \sin\left(K^{1/2} D_C\right)$$

# **Baryon Acoustic Oscillations (BAO)**

#### **Standard Ruler**



- Imprint of sound waves frozen in the early Universe
- Scale set by sound horizon and does not change in time, but depends on the amount of dark energy

# Statistical tool to quantify galaxy distributions 2-point correlation functions/Power spectrum

 Galaxy correlation functions measure an excess probability (relative to Poisson) of galaxy pairs separated by distance r.





2 point correlation function

$$\xi(r) = \frac{DD(r)}{RR(r)} - 1$$

Fourier Transformation

Power spectrum

$$\left\langle \delta(\overrightarrow{k})\delta(\overrightarrow{k'})\right\rangle = (2\pi)^3 \delta_D(\overrightarrow{k} - \overrightarrow{k'})P(k)$$

Position x Position: galaxy clustering Position x Shape: galaxy lensing Shape x Shape: cosmic shear

### Measuring distance with standard ruler



### **BAO** distance measurement

- Planck CMB and BAO measurements are consistent under  $\Lambda$ CDM model
- Note that I am not including the recent result from Dark Energy Spectroscopic Instrument (DESI)





## **Concordance Cosmology**

 CMB, SNe Ia, and BAO measurements seem to be consistent under Λ CDM model in early 2000s!



# Concordance Cosmology...?

 Significant tension between early-Universe and late-Universe probes!

• "Hubble Tension"



### **Blind Analysis**

#### **Avoid confirmation bias...**



### Stress test $\Lambda$ CDM using large-scale structure probes



### Test the evolution of the structure

### **Amplitude of matter density fluctuations**



### S8 Tension: accumulated evidence of disagreement

•  $\sigma_8$  measures "clumpiness" of the Universe



### How does S8 tension look like?

 Comparison between the Universe measured from HSC-Y1 lensing and predicted from Planck CMB



Planck Collaboration (2020)



Credit: Takahiro Nishimichi

The difference by eye is really subtle! (i.e. era of precision cosmology)

### Why measuring $\sigma_8$ is hard?

We want to measure mass distribution like this...



Credit: NASA

### This is all we can see...

Light from galaxies: galaxies are a biased tracer of DM



Credit: NASA

### Cosmological probes for growth of structure

- Redshift-space distortion through galaxy clustering
- Cosmic shear through weak gravitational lensing
- Galaxy clusters



sensitivity to expansion

# **Redshift-Space Distortion (RSD)**

 Redshift is a combination of Hubble expansion and peculiar motion of galaxies → isotropic galaxy distribution becomes anisotropic in redshift-space



# **Redshift-Space Distortion (RSD)**

 On large scales, peculiar velocity can be computed as a function of growth rate

$$|v_{\rm pec}| \sim \frac{d\sigma_8}{d\ln a} = f\sigma_8 \quad \text{where} \quad f = \frac{d\ln\sigma_8}{d\ln a} \approx \Omega_m^{\gamma}$$
 
$$\delta_g^{(s)}(k,\mu) = (b+f\mu^2)\delta_m^{(r)}(k) \quad \text{wis angle between r and LOS}$$
 "real-space"(r) 
$$\frac{\mu \text{ is angle between r and LOS}}{175}$$
 
$$\frac{100}{175}$$
 
$$\frac{100}{125}$$
 
$$\frac{100}{100}$$
 
$$\frac{100}{125}$$
 
$$\frac{100}{100}$$
 
$$\frac{100}{125}$$
 
$$\frac{100}{100}$$
 
$$\frac{100}{125}$$
 
$$\frac{100}{100}$$
 
$$\frac{100}{125}$$
 
$$\frac{100}{125}$$

### Forecast for DESI Y1 and PFS in a few years

Can constrain the growth of structure with 6% up to z~2.4



## **Gravitational Lensing**

- When massive objects in the Universe distort spacetime, the path of light around it is bent, as if by a lens.
- Create multiple images of the same objects or distort the image of galaxies (strong lensing)



# Weak Gravitational Lensing

#### Can measure halo mass of clusters

Coherent distortion of galaxy shapes ("shear")



Credit:CFHT

## Weak Gravitational Lensing

#### Can measure halo mass of clusters

- Coherent distortion of galaxy shapes ("shear") is ~1% effect
- Required many galaxy images!





Credit: M. Oguri

# Weak Gravitational Lensing

#### Can measure halo mass of clusters

- Coherent distortion of galaxy shapes ("shear") is ~1% effect
- Required many galaxy images!





### **Cosmic Shear**

Redshift

$$\begin{split} \xi_{\pm}(\theta) &= \langle \gamma_{+}(\theta')\gamma_{+}(\theta'+\theta)\rangle_{\theta'} \pm \langle \gamma_{\times}(\theta')\gamma_{\times}(\theta'+\theta)\rangle_{\theta'} \\ &\sim \xi_{mm}(\theta;\sigma_{8},\Omega_{m}) \end{split}$$

Note:  $\theta$  is angular scales (not separation between galaxies)

Correlation can be computed within a redshirt bin or across redshift bins

Fourier space measurements  $C_{\rm EE}(l)$ ,  $C_{\rm BB}(l)$  are also common now.

# **Cosmic Shear Surveys**

#### **Imaging/Photometric Galaxy Surveys**

'stage-III' dark energy surveys







KiDS (2012-2019) DES (2013-2019) HSC (2014-2020)

1500 deg<sup>2</sup>, r<sub>lim</sub>~25 5000 deg<sup>2</sup>, r<sub>lim</sub>~25 1400 deg<sup>2</sup>, r<sub>lim</sub>~26

### **Result from HSC Y3**

• Mild tensions ( $\sim 2\sigma$ ) between cosmic shear and Planck CMB measurements



# **Galaxy Clusters**

#### The most massive self-gravitationally bound object



- Mass $\sim 10^{14} 10^{15} \mathrm{M}_{\odot}/h$
- Size~a few Mpc/h

$$(Mpc=3 \times 10^{19} km)$$

 "Optical": identified from imaging (photometric) data by finding overdense regions of galaxies

Credit: NASA/CXC/U. Missouri/STScl/JPL/CalTech

# Clusters as a cosmological probe

 Count the number of clusters (as a function of cluster mass)

With Dark Energy



Without Dark Energy



Virgo consortium

# Clusters as a cosmological probe

- Background cosmology (i.e.,  $\Omega_{
  m m}$ ) impacts the number density
- Clusters form from the highest density peaks in the initial density field
- $\sigma_8$  (="clumpiness"): higher  $\sigma_8 \to \text{more high-density peaks} \to \text{more massive clusters}$



# Clusters can be powerful...

 Cosmic Visions Report (2016): "The number of massive galaxy clusters could emerge as the most powerful cosmological probe..."



# **Challenge in Cluster Cosmology**

- Cosmic Visions Report (2016): "The number of massive galaxy clusters could emerge as the most powerful cosmological probe if the masses of the clusters can be accurately measured."
- Cluster mass is not a direct observable



# Systematics

# Challenge in Cluster Cosmology



#### SDSS redMaPPer clusters x HSC WL Measurement

#### SDSS redMaPPer cluster sample

- Area ~ 8300 deg<sup>2</sup>
- z = [0.1, 0.33]
- $\lambda = [20,30],[30,40],[40,55],[55,200]$
- In total, ~8000 clusters
- Based on SDSS DR8 photometry





Cluster clustering signal

### **Result from SDSSxHSC Y3**

Cosmological constraints from optical clusters and Planck CMB are constant



### **S8** tension

- Different probes suffer from different systematics
- Need to wait for ongoing/future photometric surveys to improve statistical precisions!



### **Photometric Surveys: Now and Future**



### Roadmap of Spectroscopic Galaxy Surveys



Arai et al (incl. TS),2023

Credit: SDSS, NOIRLab, NAOJ, ESA/C. Carreau, NASA



Stage-IV

# Coming back to BAO

#### **Recent results from DESI**

Evidence of time-evolving dark energy?



### Some stories about Dark Matter

#### 1933: "Dunkle Materie" in the Coma Cluster



$$M = RV^2/G$$
Cluster mass Galaxy velocities



Credit: A. Salcedo

### Some stories about Dark Matter

# 1971: Simulated bars and arms appear to be unstable





Gredit: A. Salcedo

Credit: A. Salcedo

Hohl 1971

### Some stories about Dark Matter

1970s: Rotation curves confirm dark matter in galaxies





Archives & Special Collections, Vassar College Library

### We still don't know what DM is...

#### Web of Dark Matter Theories



Credit: K. Boddy

# DM search is another topic...



Snowmass 2021 Theory Frontier: Astrophysical and Cosmological Probes of Dark Matter KB, Lisanti, McDermott, Rodd, Weniger+ (2203.06380)

#### Discovery Space: galaxy surveys are trying to explore...



Thank you!